File size: 2,310 Bytes
d28baf4 cfd111d d28baf4 cfd111d d28baf4 cfd111d d28baf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: mit
base_model: wu981526092/Sentence-Level-Stereotype-Detector
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: stereotype_finetuned_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# stereotype_finetuned_1
This model is a fine-tuned version of [wu981526092/Sentence-Level-Stereotype-Detector](https://huggingface.co/wu981526092/Sentence-Level-Stereotype-Detector) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3184
- Accuracy: 0.856
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4268 | 1.0 | 516 | 0.3511 | 0.8425 |
| 0.2819 | 2.0 | 1032 | 0.3534 | 0.8593 |
| 0.2304 | 3.0 | 1548 | 0.3743 | 0.8636 |
| 0.175 | 4.0 | 2064 | 0.4341 | 0.8531 |
| 0.1201 | 5.0 | 2580 | 0.6222 | 0.8505 |
| 0.0928 | 6.0 | 3096 | 0.7032 | 0.8447 |
| 0.059 | 7.0 | 3612 | 0.8496 | 0.848 |
| 0.0362 | 8.0 | 4128 | 0.9396 | 0.8484 |
| 0.0293 | 9.0 | 4644 | 1.0407 | 0.8465 |
| 0.0202 | 10.0 | 5160 | 1.0932 | 0.8524 |
| 0.0151 | 11.0 | 5676 | 1.1281 | 0.8531 |
| 0.0069 | 12.0 | 6192 | 1.1992 | 0.8585 |
| 0.0039 | 13.0 | 6708 | 1.3510 | 0.8502 |
| 0.0047 | 14.0 | 7224 | 1.3186 | 0.8545 |
| 0.0015 | 15.0 | 7740 | 1.3184 | 0.856 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
|