File size: 2,195 Bytes
f5ae8b2 183174a 54c4dd4 183174a d7a1693 183174a d7a1693 f5ae8b2 183174a f5ae8b2 54c4dd4 4e03af4 f5ae8b2 54c4dd4 4e03af4 f5ae8b2 54c4dd4 f5ae8b2 54c4dd4 183174a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
language:
- da
license: mit
widget:
- Medarbejderen starter arbejdet den 1. januar 2020 og afslutter arbejdet den 21.
januar 2020. Den ugentlige arbejdstid er 37 timer, og medarbejderen bliver aflønnet
med 23.000,00 kr. om måneden. Arbejdsstedet er Supervej 21, 2000 Frederiksberg.
inference:
parameters:
aggregation_strategy: first
base_model: xlm-roberta-base
model-index:
- name: contract-ner-model-da
results: []
---
# contract-ner-model-da
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on a custom contracts dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0026
- Micro F1: 0.9297
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 919
- num_epochs: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Micro F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.8971 | 0.24 | 200 | 0.0205 | 0.0 |
| 0.0173 | 0.48 | 400 | 0.0100 | 0.2921 |
| 0.0092 | 0.73 | 600 | 0.0065 | 0.7147 |
| 0.0063 | 0.97 | 800 | 0.0046 | 0.8332 |
| 0.0047 | 1.21 | 1000 | 0.0047 | 0.8459 |
| 0.0042 | 1.45 | 1200 | 0.0039 | 0.8694 |
| 0.0037 | 1.69 | 1400 | 0.0035 | 0.8888 |
| 0.0032 | 1.93 | 1600 | 0.0035 | 0.8840 |
| 0.0025 | 2.18 | 1800 | 0.0029 | 0.8943 |
| 0.0023 | 2.42 | 2000 | 0.0024 | 0.9104 |
| 0.0023 | 2.66 | 2200 | 0.0032 | 0.8808 |
| 0.0021 | 2.9 | 2400 | 0.0022 | 0.9338 |
| 0.0018 | 3.14 | 2600 | 0.0020 | 0.9315 |
| 0.0015 | 3.39 | 2800 | 0.0026 | 0.9297 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.8.1+cu101
- Datasets 1.12.1
- Tokenizers 0.10.3 |