--- license: openrail language: - it datasets: - teelinsan/camoscio --- # ExtremITA Camoscio 7 bilion parameters This is the base model trained on Italian instructions, a sibling of Alpaca. It is based on [tellinsan/camoscio-7b-llama](https://huggingface.co/teelinsan/camoscio-7b-llama) adapters and the original LLaMA model, and it adds nothing new to [tellinsan/camoscio-7b-llama](https://huggingface.co/teelinsan/camoscio-7b-llama). Our version is the merged model with the adapters in order to obtain a more stable model that can be further fine-tuned, which we did for the [EVALITA 2023](https://www.evalita.it/campaigns/evalita-2023/) challenge. # Usage Checkout the github repository for more insights and codes: https://github.com/crux82/ExtremITA ```python from transformers import LLaMATokenizer, LLaMAForCausalLM, GenerationConfig import torch tokenizer = LLaMATokenizer.from_pretrained("yahma/llama-7b-hf") model = LLaMAForCausalLM.from_pretrained( "sag-uniroma2/extremITA-Camoscio-7b", load_in_8bit=True, device_map="auto", ) generation_config = GenerationConfig( temperature=0.2, top_p=0.75, top_k=40, num_beams=4, ) prompts = [ "Riassumi la storia di Pinocchio", "Scrivi un programma che stampa i numeri da 1 a 100. Ma per i multipli \ di tre stampa 'Fizz' al posto del numero e per i multipli di cinque \ stampa 'Buzz'. Per i numeri che sono multipli sia di tre che di cinque \ stampa 'FizzBuzz'." ] inputs = tokenizer(prompts, return_tensors="pt", padding=True, truncation=True).to(model.device) with torch.no_grad(): gen_outputs = model.generate( **inputs, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, ) for i in range(len(gen_outputs)): output = tokenizer.decode(gen_outputs[i], skip_special_tokens=True) print(output) ```