Transformers
PyTorch
Portuguese
israelcamp commited on
Commit
d6a2b22
1 Parent(s): 35560c3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -0
README.md CHANGED
@@ -1,3 +1,45 @@
1
  ---
 
 
 
 
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ inference: false
3
+ language: pt
4
+ datasets:
5
+ - assin2
6
  license: mit
7
  ---
8
+
9
+ # DeBERTinha XSmall for Recognizing Textual Entailment
10
+
11
+ ### **Labels**:
12
+ * 0 : There is no entailment between premise and hypothesis.
13
+ * 1 : There is entailment between premise and hypothesis.
14
+
15
+
16
+ ## Full classification example
17
+
18
+ ```python
19
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
20
+ import numpy as np
21
+ import torch
22
+ from scipy.special import softmax
23
+
24
+ model_name = "sagui-nlp/debertinha-ptbr-xsmall-assin2-rte"
25
+ s1 = "Os homens estão cuidadosamente colocando as malas no porta-malas de um carro."
26
+ s2 = "Os homens estão colocando bagagens dentro do porta-malas de um carro."
27
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
28
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
29
+ config = AutoConfig.from_pretrained(model_name)
30
+ model_input = tokenizer(*([s1], [s2]), padding=True, return_tensors="pt")
31
+ with torch.no_grad():
32
+ output = model(**model_input)
33
+ scores = output[0][0].detach().numpy()
34
+ scores = softmax(scores)
35
+ ranking = np.argsort(scores)
36
+ ranking = ranking[::-1]
37
+ for i in range(scores.shape[0]):
38
+ l = config.id2label[ranking[i]]
39
+ s = scores[ranking[i]]
40
+ print(f"{i+1}) Label: {l} Score: {np.round(float(s), 4)}")
41
+ ```
42
+
43
+ ## Citation
44
+
45
+ Comming soon