Model save
Browse files- README.md +84 -0
- adapter_model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mistralai/Mistral-7B-v0.1
|
3 |
+
library_name: peft
|
4 |
+
license: apache-2.0
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
tags:
|
8 |
+
- trl
|
9 |
+
- reward-trainer
|
10 |
+
- generated_from_trainer
|
11 |
+
model-index:
|
12 |
+
- name: pairwise-reward-sft-zephyr-7b-sft-qlora-ultrafeedback-ultrafeedback-binarized-20241013-124646
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# pairwise-reward-sft-zephyr-7b-sft-qlora-ultrafeedback-ultrafeedback-binarized-20241013-124646
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.4739
|
24 |
+
- Accuracy: 0.7592
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 1.5e-05
|
44 |
+
- train_batch_size: 16
|
45 |
+
- eval_batch_size: 32
|
46 |
+
- seed: 42
|
47 |
+
- gradient_accumulation_steps: 2
|
48 |
+
- total_train_batch_size: 32
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 1.0
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
56 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|
|
57 |
+
| 0.6209 | 0.0526 | 100 | 0.6427 | 0.6784 |
|
58 |
+
| 0.6346 | 0.1052 | 200 | 0.5829 | 0.7165 |
|
59 |
+
| 0.5945 | 0.1578 | 300 | 0.5333 | 0.7351 |
|
60 |
+
| 0.5258 | 0.2104 | 400 | 0.5169 | 0.7461 |
|
61 |
+
| 0.4914 | 0.2630 | 500 | 0.5209 | 0.7346 |
|
62 |
+
| 0.4995 | 0.3155 | 600 | 0.5056 | 0.7536 |
|
63 |
+
| 0.5272 | 0.3681 | 700 | 0.5041 | 0.7541 |
|
64 |
+
| 0.4993 | 0.4207 | 800 | 0.4943 | 0.7471 |
|
65 |
+
| 0.5317 | 0.4733 | 900 | 0.4970 | 0.7602 |
|
66 |
+
| 0.5193 | 0.5259 | 1000 | 0.4850 | 0.7597 |
|
67 |
+
| 0.4534 | 0.5785 | 1100 | 0.4931 | 0.7582 |
|
68 |
+
| 0.4828 | 0.6311 | 1200 | 0.4808 | 0.7582 |
|
69 |
+
| 0.5432 | 0.6837 | 1300 | 0.4836 | 0.7491 |
|
70 |
+
| 0.4343 | 0.7363 | 1400 | 0.4797 | 0.7582 |
|
71 |
+
| 0.4287 | 0.7889 | 1500 | 0.4794 | 0.7612 |
|
72 |
+
| 0.5117 | 0.8414 | 1600 | 0.4799 | 0.7587 |
|
73 |
+
| 0.4369 | 0.8940 | 1700 | 0.4770 | 0.7582 |
|
74 |
+
| 0.4537 | 0.9466 | 1800 | 0.4750 | 0.7566 |
|
75 |
+
| 0.451 | 0.9992 | 1900 | 0.4739 | 0.7592 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- PEFT 0.12.0
|
81 |
+
- Transformers 4.45.2
|
82 |
+
- Pytorch 2.4.0+cu121
|
83 |
+
- Datasets 2.20.0
|
84 |
+
- Tokenizers 0.20.0
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1342255048
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e03e7540515ace64237f034bf27039f0606155dbf8d7830e042bbf706586d53d
|
3 |
size 1342255048
|