File size: 13,725 Bytes
39f9663
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x786ca3002a70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x786ca3002b00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x786ca3002b90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x786ca3002c20>", "_build": "<function ActorCriticPolicy._build at 0x786ca3002cb0>", "forward": "<function ActorCriticPolicy.forward at 0x786ca3002d40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x786ca3002dd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x786ca3002e60>", "_predict": "<function ActorCriticPolicy._predict at 0x786ca3002ef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x786ca3002f80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x786ca3003010>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x786ca30030a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x786c44e26500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1731699650327328727, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABkl7y43Ku7WpozPJF0szymuAI97+6WvQAAgD8AAIA/czLyPRqILD8oLbe8y6yFvj7/ij0UQrW7AAAAAAAAAAAaGBm9rlePuoZbFzvLxLU1IGA4O5/eqDQAAIA/AACAP2ZWUbx7lNi4apQoNyJfjrC85Ci7+mRJtgAAgD8AAIA/mgb0vEjdhbrbji25D1AntHcC/zqhPko4AACAPwAAgD8z+vQ8e76cuj0hNjcTkz4y4WTeOH1yUrYAAIA/AACAP5osfj34vqw9CxN5vodke770gFa9uv4HvgAAAAAAAAAADXSgPcOJWrrLxmc6IiP9NNmyQ7ofdIi5AACAPwAAgD/mbG29Kag1uuETizshNvM2BKI5Onu6oroAAIA/AACAPzO7gzspHFi6ZdQfuHPdG7MQbDe7ox08NwAAgD8AAIA/5j0dveEAnLqwaoa6vAZ+tZEpTbngH5s5AACAPwAAgD+GqUu+ytKVP3qvBL8ObdW+Kk9qvhv60r0AAAAAAAAAAPPml72up7S4KqkVOY9hBDQupqq6tGQvuAAAgD8AAIA/M+NuPFA0tj+U97g9vOwovtQIez3SsoI9AAAAAAAAAAAaUg49SDOcugMrBzcmXwoy1usGOiobHbYAAIA/AACAPwCe+LyPFiq6J2SQugm3ArVfYde6lDOqOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGS3sVk+X7eMAWyUTegDjAF0lEdAkAWiKiwjdHV9lChoBkdAZAbyup0fYGgHTegDaAhHQJAL0R6F/QV1fZQoaAZHQF7nLG7z06JoB03oA2gIR0CQE/LRrrPddX2UKGgGR0BjlOOyVv/BaAdN6ANoCEdAkBaV9BrvcHV9lChoBkdAZwas0YTCcmgHTegDaAhHQJAaoAEMb3p1fZQoaAZHQGdQPeHi3odoB03oA2gIR0CQHCLbHp8ndX2UKGgGR0BjVySq2jO+aAdN6ANoCEdAkBxDUExIrnV9lChoBkdAY9rDYywfQ2gHTegDaAhHQJAdqTA31jB1fZQoaAZHQGHDkEC/47BoB03oA2gIR0CQILRzijtYdX2UKGgGR0BmMH+4smOVaAdN6ANoCEdAkCdhyXD3unV9lChoBkdAZFcwpON5t2gHTegDaAhHQJAn5P0qYqp1fZQoaAZHQF7dMEidJ8RoB03oA2gIR0CQKNsnRb8ndX2UKGgGR0BkNtqFh5PeaAdN6ANoCEdAkCy9Frl/6XV9lChoBkdAZADHQQcxTWgHTegDaAhHQJAvURODaoN1fZQoaAZHQGCpnoxHoX9oB03oA2gIR0CQNJox59mZdX2UKGgGR0BhHM4R28qXaAdN6ANoCEdAkDeXc+JP7HV9lChoBkdAYcNViF0xM2gHTegDaAhHQJBQaBSUC7t1fZQoaAZHQGFMLEcbR4RoB03oA2gIR0CQViw3o9s8dX2UKGgGR0BjeOez2OABaAdN6ANoCEdAkF8ZSeiBXnV9lChoBkdAY4ey2x6fJ2gHTegDaAhHQJBh3k6tDD11fZQoaAZHQGS7hq0tyxRoB03oA2gIR0CQZbXQ+lj3dX2UKGgGR0Bne4SYgJTmaAdN6ANoCEdAkGeEjs2NvXV9lChoBkdAaTqtYjjaPGgHTegDaAhHQJBnpqGlANZ1fZQoaAZHQGSrkpiI+GJoB03oA2gIR0CQaWGN70FsdX2UKGgGR0BnkJGax5cDaAdN6ANoCEdAkG0gAQxvenV9lChoBkdAZcHoakyk9GgHTegDaAhHQJB0oIOYplV1fZQoaAZHQGRRfZElVtJoB03oA2gIR0CQdR4+KTB7dX2UKGgGR0BfgFYhdMTOaAdN6ANoCEdAkHYRLkCFK3V9lChoBkdAYTvRoh6jWWgHTegDaAhHQJB59o11nul1fZQoaAZHQGCcR3u/k/9oB03oA2gIR0CQfIvrGBFvdX2UKGgGR0Bl3kqx1PnCaAdN6ANoCEdAkIF5LM9r43V9lChoBkdAY6EM4LkS3GgHTegDaAhHQJCDug6EJ0J1fZQoaAZHQGJ6cEV32VVoB03oA2gIR0CQmmmYSg5BdX2UKGgGR0BmqaTINmUXaAdN6ANoCEdAkKFoqoZQ53V9lChoBkdAZiIEfT1CgWgHTegDaAhHQJCrGjVQQ+V1fZQoaAZHQF6l62OQyRBoB03oA2gIR0CQrcJm/WUbdX2UKGgGR0BkojVvuPV/aAdN6ANoCEdAkLGoKlYU4HV9lChoBkdAXsnP5YYBNmgHTegDaAhHQJCzKNKh+OR1fZQoaAZHQGVNg/cFhXtoB03oA2gIR0CQs0bqyGBXdX2UKGgGR0Bj8y99MK1HaAdN6ANoCEdAkLSup84Pw3V9lChoBkdATCJAfMfRu2gHS+loCEdAkLeqHj6vaHV9lChoBkdAY11As052hmgHTegDaAhHQJC3w8s+V1R1fZQoaAZHQGQfQJgLJCBoB03oA2gIR0CQvmBRhttRdX2UKGgGR0BkcGkHlfZ3aAdN6ANoCEdAkL7kjkdWAHV9lChoBkdAZnQ2LHdXT2gHTegDaAhHQJDACclPact1fZQoaAZHQGTIY6wMYuVoB03oA2gIR0CQxDu5jH4odX2UKGgGR0BikNe6Zpi7aAdN6ANoCEdAkMcU/r0J4XV9lChoBkdAYjzjnV5KOGgHTegDaAhHQJDMR5yEL6V1fZQoaAZHQGO2z+FUQ05oB03oA2gIR0CQzroXsPatdX2UKGgGR0Bl5vnKW9lFaAdN6ANoCEdAkOiJMtbs4XV9lChoBkdAYN2HerMkhWgHTegDaAhHQJDuDG+9Jz11fZQoaAZHQGQ0wVj7Q9loB03oA2gIR0CQ+VWvbGm2dX2UKGgGR0BnOy8xsVL0aAdN6ANoCEdAkP1i5/b0v3V9lChoBkdAY8E9ic5Ke2gHTegDaAhHQJD+1mZmZmZ1fZQoaAZHQGMGL0J4SpRoB03oA2gIR0CQ/vK3d9DydX2UKGgGR0BkX8S7GvOhaAdN6ANoCEdAkQBEOqebu3V9lChoBkdAZguQjlgc+GgHTegDaAhHQJEDhqYZ2p11fZQoaAZHQF/hU4JeE7JoB03oA2gIR0CRA6mpVCHAdX2UKGgGR0BlmzK5kK/maAdN6ANoCEdAkQuplz2ex3V9lChoBkdAY/kzeGfwqmgHTegDaAhHQJEMUT238XN1fZQoaAZHQGUL+OwPiDNoB03oA2gIR0CRDUlFMIu5dX2UKGgGR0BmiKUcGTs6aAdN6ANoCEdAkRDzF+/gznV9lChoBkdAYhtFhG6PKmgHTegDaAhHQJETmhM8HOd1fZQoaAZHQGO7OmaYu01oB03oA2gIR0CRGMhAWznidX2UKGgGR0Bmm6/ub7TEaAdN6ANoCEdAkRtEvPC2t3V9lChoBkdAZX51PFefI2gHTegDaAhHQJEypGViWmh1fZQoaAZHQGScFb3XZoRoB03oA2gIR0CROXGcFyJbdX2UKGgGR0BnjSI1tO2zaAdN6ANoCEdAkUZgkC3gDXV9lChoBkdAY31QWN3np2gHTegDaAhHQJFKNZW7voh1fZQoaAZHQFjsEV32VVxoB03oA2gIR0CRS6ie/YapdX2UKGgGR0BkkZowmE5AaAdN6ANoCEdAkUvFR+BpYnV9lChoBkdAYtfU5uIhyWgHTegDaAhHQJFNCynk1dh1fZQoaAZHQGaR2PDHfdhoB03oA2gIR0CRT+Hi3ocJdX2UKGgGR0Bh4WGdqcmTaAdN6ANoCEdAkU/7ehwl0HV9lChoBkdAYwiLvTgEU2gHTegDaAhHQJFVxEpiI+J1fZQoaAZHQGFYvx6OYIBoB03oA2gIR0CRVjIyCWeIdX2UKGgGR0BmKIvWYnfEaAdN6ANoCEdAkVcLVrhzeXV9lChoBkdAZnMHSnccl2gHTegDaAhHQJFapHavicZ1fZQoaAZHQGGpITXarWBoB03oA2gIR0CRXSzPrv9cdX2UKGgGR0BlGrv9cbBHaAdN6ANoCEdAkWIB4dIXj3V9lChoBkdAaE9zBhx5s2gHTegDaAhHQJFkNn8Kohp1fZQoaAZHQGJHwA+6iCdoB03oA2gIR0CRanUoKD02dX2UKGgGR0Bk7UCo0hvBaAdN6ANoCEdAkYN+hPCVKXV9lChoBkdAYvrtzCDVY2gHTegDaAhHQJGOnlcQiA51fZQoaAZHQGgR0CRwIdFoB03oA2gIR0CRkqoVVPvbdX2UKGgGR0BmiTXg9/z8aAdN6ANoCEdAkZQYqTbFj3V9lChoBkdAZKWKv3ai9WgHTegDaAhHQJGUNfgJkXl1fZQoaAZHQGc+gh8pkPNoB03oA2gIR0CRlYrTYukDdX2UKGgGR0BnwtRP420iaAdN6ANoCEdAkZg/8Q7LdXV9lChoBkdAYjaSPEKmbmgHTegDaAhHQJGYWVAzHjp1fZQoaAZHQGLMdU83dbhoB03oA2gIR0CRnxzK9wm3dX2UKGgGR0BnhMzCUHIIaAdN6ANoCEdAkZ+z1K5CnnV9lChoBkdAZvgBS1mapmgHTegDaAhHQJGg/Jo0ygx1fZQoaAZHQHFfj7655JNoB03FA2gIR0CRo7EcKgIydX2UKGgGR0BoRZouf29MaAdN6ANoCEdAkalQGSpzcXV9lChoBkdAbttz9S/CZWgHTYkDaAhHQJGrXD63y7R1fZQoaAZHQGO3vvKEFntoB03oA2gIR0CRrjLsrupkdX2UKGgGR0BrtWOlwcYJaAdNkwJoCEdAkbOIKx9oe3V9lChoBkdAZ8MCo0hvBWgHTegDaAhHQJG2XfbblBB1fZQoaAZHQG5UdtdiUgVoB01aAmgIR0CRtzvv0AcUdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}