File size: 9,945 Bytes
88dd46b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
from argparse import ArgumentParser
import time
import os, re
import fnmatch
import glob
import shutil
import zipfile
from tqdm import tqdm

def find_all_htmls(root_dir):
    html_files = []
    for foldername, subfolders, filenames in os.walk(root_dir):
        for extension in ['*.html', '*.xhtml', '*.htm']:
            for filename in fnmatch.filter(filenames, extension):
                file_path = os.path.join(foldername, filename)
                html_files.append(file_path)
    return html_files

def get_html_text_list(epub_path, text_length):
    data_list = []

    def clean_text(text):
        text=re.sub(r'<rt[^>]*?>.*?</rt>', '', text)
        text=re.sub(r'<[^>]*>|\n', '', text)
        return text

    with open(epub_path, 'r', encoding='utf-8') as f:
        file_text = f.read()
        matches = re.finditer(r'<(h[1-6]|p).*?>(.+?)</\1>', file_text, flags=re.DOTALL)
        if not matches:
            print("perhaps this file is a struct file")
            return data_list, file_text
        groups = []
        text = ''
        pre_end = 0
        for match in matches:
            if len(text + match.group(2)) <= text_length:
                new_text = clean_text(match.group(2))
                if new_text:
                    groups.append(match)
                    text += '\n' + new_text
            else:
                data_list.append((text, groups, pre_end))
                pre_end = groups[-1].end()
                new_text = clean_text(match.group(2))
                if new_text:
                    groups = [match]
                    text = clean_text(match.group(2))
                else:
                    groups = []
                    text = ''
                    
        if text:
            data_list.append((text, groups, pre_end))
    # TEST:
    # for d in data_list:
    #     print(f"{len(d[0])}", end=" ")
    return data_list, file_text

def get_prompt(input, model_version):
    if model_version == '0.5' or model_version == '0.8':
        prompt = "<reserved_106>将下面的日文文本翻译成中文:" + input + "<reserved_107>"
        return prompt
    if model_version == '0.7':
        prompt = f"<|im_start|>user\n将下面的日文文本翻译成中文:{input}<|im_end|>\n<|im_start|>assistant\n"
        return prompt
    if model_version == '0.1':
        prompt = "Human: \n将下面的日文文本翻译成中文:" + input + "\n\nAssistant: \n"
        return prompt
    if model_version == '0.4':
        prompt = "User: 将下面的日文文本翻译成中文:" + input + "\nAssistant: "
        return prompt

    raise ValueError(f"Wrong model version{model_version}, please view https://huggingface.co/sakuraumi/Sakura-13B-Galgame")

def split_response(response, model_version):
    response = response.replace("</s>", "")
    if model_version == '0.5' or model_version == '0.8':
        output = response.split("<reserved_107>")[1]
        return output
    if model_version == '0.7':
        output = response.split("<|im_start|>assistant\n")[1]
        return output
    if model_version == '0.1':
        output = response.split("\n\nAssistant: \n")[1]
        return output
    if model_version == '0.4':
        output = response.split("\nAssistant: ")[1]
        return output
    
    raise ValueError(f"Wrong model version{model_version}, please view https://huggingface.co/sakuraumi/Sakura-13B-Galgame")

def detect_degeneration(generation: list, model_version):
    if model_version != "0.8":
        return False
    i = generation.index(196)
    generation = generation[i+1:]
    if len(generation) >= 1023:
        print("model degeneration detected, retrying...")
        return True
    else:
        return False

def get_model_response(model: AutoModelForCausalLM, tokenizer: AutoTokenizer, prompt: str, model_version: str, generation_config: GenerationConfig, text_length: int):

    backup_generation_config_stage2 = GenerationConfig(
            temperature=1,
            top_p=0.6,
            top_k=40,
            num_beams=1,
            bos_token_id=1,
            eos_token_id=2,
            pad_token_id=0,
            max_new_tokens=1024,
            min_new_tokens=1,
            do_sample=True
        )

    backup_generation_config_stage3 = GenerationConfig(
            top_k=5,
            num_beams=1,
            bos_token_id=1,
            eos_token_id=2,
            pad_token_id=0,
            max_new_tokens=1024,
            min_new_tokens=1,
            penalty_alpha=0.3
        )

    backup_generation_config = [backup_generation_config_stage2, backup_generation_config_stage3]

    generation = model.generate(**tokenizer(prompt, return_tensors="pt").to(model.device), generation_config=generation_config)[0]
    if len(generation) > 2 * text_length:
        stage = 0
        while detect_degeneration(list(generation), model_version):
            stage += 1
            if stage > 2:
                print("model degeneration cannot be avoided.")
                break
            generation = model.generate(**tokenizer(prompt, return_tensors="pt").to(model.device), generation_config=backup_generation_config[stage-1])[0]
    response = tokenizer.decode(generation)
    output = split_response(response, model_version)
    return output


def main():
    parser = ArgumentParser()
    parser.add_argument("--model_name_or_path", type=str, default="SakuraLLM/Sakura-13B-LNovel-v0.8", help="model huggingface id or local path.")
    parser.add_argument("--use_gptq_model", action="store_true", help="whether your model is gptq quantized.")
    parser.add_argument("--model_version", type=str, default="0.8", help="model version written on huggingface readme, now we have ['0.1', '0.4', '0.5', '0.7', '0.8']")
    parser.add_argument("--data_path", type=str, default="", help="file path of the epub you want to translate.")
    parser.add_argument("--data_folder", type=str, default="", help="folder path of the epubs you want to translate.")
    parser.add_argument("--output_folder", type=str, default="", help="save folder path of the epubs model translated.")
    parser.add_argument("--text_length", type=int, default=512, help="input max length in each inference.")
    args = parser.parse_args()

    if args.use_gptq_model:
        from auto_gptq import AutoGPTQForCausalLM

    generation_config = GenerationConfig(
        temperature=0.1,
        top_p=0.3,
        top_k=40,
        num_beams=1,
        bos_token_id=1,
        eos_token_id=2,
        pad_token_id=0,
        max_new_tokens=1024,
        min_new_tokens=1,
        do_sample=True
    )

    print("Loading model...")
    tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=False, trust_remote_code=True)

    if args.use_gptq_model:
        model = AutoGPTQForCausalLM.from_quantized(args.model_name_or_path, device="cuda:0", trust_remote_code=True)
    else:
        model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, device_map="auto", trust_remote_code=True)

    print("Start translating...")
    start = time.time()
    
    epub_list = []
    save_list = []
    if args.data_path:
        epub_list.append(args.data_path)
        save_list.append(os.path.join(args.output_folder, os.path.basename(args.data_path)))
    if args.data_folder:
        os.makedirs(args.output_folder, exist_ok=True)
        for f in os.listdir(args.data_folder):
            if f.endswith(".epub"):
                epub_list.append(os.path.join(args.data_folder, f))
                save_list.append(os.path.join(args.output_folder, f))
    
    for epub_path, save_path in zip(epub_list, save_list):
        print(f"translating {epub_path}...")
        start_epub = time.time()

        if os.path.exists('./temp'):
            shutil.rmtree('./temp')
        with zipfile.ZipFile(epub_path, 'r') as f:
            f.extractall('./temp')
        
        for html_path in find_all_htmls('./temp'):
            print(f"\ttranslating {html_path}...")
            start_html = time.time()

            translated = ''
            data_list, file_text = get_html_text_list(html_path, args.text_length)
            if len(data_list) == 0:
                    continue
            for text, groups, pre_end in tqdm(data_list):
                prompt = get_prompt(text, args.model_version)
                output = get_model_response(model, tokenizer, prompt, args.model_version, generation_config, args.text_length)
                texts = output.strip().split('\n')
                if len(texts) < len(groups):
                    texts += [''] * (len(groups) - len(texts))
                else:
                    texts = texts[:len(groups)-1] + ['<br/>'.join(texts[len(groups)-1:])]
                for t, match in zip(texts, groups):
                    t = match.group(0).replace(match.group(2), t)
                    translated += file_text[pre_end:match.start()] + t
                    pre_end = match.end()

            translated += file_text[data_list[-1][1][-1].end():]
            with open(html_path, 'w', encoding='utf-8') as f:
                f.write(translated)
            
            end_html = time.time()
            print(f"\t{html_path} translated, used time: ", end_html-start_html)
        
        with zipfile.ZipFile(save_path, 'w', zipfile.ZIP_DEFLATED) as f:
            for file_path in glob.glob(f'./temp/**', recursive=True):
                if not os.path.isdir(file_path):
                    relative_path = os.path.relpath(file_path, './temp')
                    f.write(file_path, relative_path)
        shutil.rmtree('./temp')
                    
        end_epub = time.time()
        print(f"{epub_path} translated, used time: ", end_epub-start_epub)

    end = time.time()
    print("translation completed, used time: ", end-start)

if __name__ == "__main__":
    main()