File size: 9,945 Bytes
88dd46b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
from argparse import ArgumentParser
import time
import os, re
import fnmatch
import glob
import shutil
import zipfile
from tqdm import tqdm
def find_all_htmls(root_dir):
html_files = []
for foldername, subfolders, filenames in os.walk(root_dir):
for extension in ['*.html', '*.xhtml', '*.htm']:
for filename in fnmatch.filter(filenames, extension):
file_path = os.path.join(foldername, filename)
html_files.append(file_path)
return html_files
def get_html_text_list(epub_path, text_length):
data_list = []
def clean_text(text):
text=re.sub(r'<rt[^>]*?>.*?</rt>', '', text)
text=re.sub(r'<[^>]*>|\n', '', text)
return text
with open(epub_path, 'r', encoding='utf-8') as f:
file_text = f.read()
matches = re.finditer(r'<(h[1-6]|p).*?>(.+?)</\1>', file_text, flags=re.DOTALL)
if not matches:
print("perhaps this file is a struct file")
return data_list, file_text
groups = []
text = ''
pre_end = 0
for match in matches:
if len(text + match.group(2)) <= text_length:
new_text = clean_text(match.group(2))
if new_text:
groups.append(match)
text += '\n' + new_text
else:
data_list.append((text, groups, pre_end))
pre_end = groups[-1].end()
new_text = clean_text(match.group(2))
if new_text:
groups = [match]
text = clean_text(match.group(2))
else:
groups = []
text = ''
if text:
data_list.append((text, groups, pre_end))
# TEST:
# for d in data_list:
# print(f"{len(d[0])}", end=" ")
return data_list, file_text
def get_prompt(input, model_version):
if model_version == '0.5' or model_version == '0.8':
prompt = "<reserved_106>将下面的日文文本翻译成中文:" + input + "<reserved_107>"
return prompt
if model_version == '0.7':
prompt = f"<|im_start|>user\n将下面的日文文本翻译成中文:{input}<|im_end|>\n<|im_start|>assistant\n"
return prompt
if model_version == '0.1':
prompt = "Human: \n将下面的日文文本翻译成中文:" + input + "\n\nAssistant: \n"
return prompt
if model_version == '0.4':
prompt = "User: 将下面的日文文本翻译成中文:" + input + "\nAssistant: "
return prompt
raise ValueError(f"Wrong model version{model_version}, please view https://huggingface.co/sakuraumi/Sakura-13B-Galgame")
def split_response(response, model_version):
response = response.replace("</s>", "")
if model_version == '0.5' or model_version == '0.8':
output = response.split("<reserved_107>")[1]
return output
if model_version == '0.7':
output = response.split("<|im_start|>assistant\n")[1]
return output
if model_version == '0.1':
output = response.split("\n\nAssistant: \n")[1]
return output
if model_version == '0.4':
output = response.split("\nAssistant: ")[1]
return output
raise ValueError(f"Wrong model version{model_version}, please view https://huggingface.co/sakuraumi/Sakura-13B-Galgame")
def detect_degeneration(generation: list, model_version):
if model_version != "0.8":
return False
i = generation.index(196)
generation = generation[i+1:]
if len(generation) >= 1023:
print("model degeneration detected, retrying...")
return True
else:
return False
def get_model_response(model: AutoModelForCausalLM, tokenizer: AutoTokenizer, prompt: str, model_version: str, generation_config: GenerationConfig, text_length: int):
backup_generation_config_stage2 = GenerationConfig(
temperature=1,
top_p=0.6,
top_k=40,
num_beams=1,
bos_token_id=1,
eos_token_id=2,
pad_token_id=0,
max_new_tokens=1024,
min_new_tokens=1,
do_sample=True
)
backup_generation_config_stage3 = GenerationConfig(
top_k=5,
num_beams=1,
bos_token_id=1,
eos_token_id=2,
pad_token_id=0,
max_new_tokens=1024,
min_new_tokens=1,
penalty_alpha=0.3
)
backup_generation_config = [backup_generation_config_stage2, backup_generation_config_stage3]
generation = model.generate(**tokenizer(prompt, return_tensors="pt").to(model.device), generation_config=generation_config)[0]
if len(generation) > 2 * text_length:
stage = 0
while detect_degeneration(list(generation), model_version):
stage += 1
if stage > 2:
print("model degeneration cannot be avoided.")
break
generation = model.generate(**tokenizer(prompt, return_tensors="pt").to(model.device), generation_config=backup_generation_config[stage-1])[0]
response = tokenizer.decode(generation)
output = split_response(response, model_version)
return output
def main():
parser = ArgumentParser()
parser.add_argument("--model_name_or_path", type=str, default="SakuraLLM/Sakura-13B-LNovel-v0.8", help="model huggingface id or local path.")
parser.add_argument("--use_gptq_model", action="store_true", help="whether your model is gptq quantized.")
parser.add_argument("--model_version", type=str, default="0.8", help="model version written on huggingface readme, now we have ['0.1', '0.4', '0.5', '0.7', '0.8']")
parser.add_argument("--data_path", type=str, default="", help="file path of the epub you want to translate.")
parser.add_argument("--data_folder", type=str, default="", help="folder path of the epubs you want to translate.")
parser.add_argument("--output_folder", type=str, default="", help="save folder path of the epubs model translated.")
parser.add_argument("--text_length", type=int, default=512, help="input max length in each inference.")
args = parser.parse_args()
if args.use_gptq_model:
from auto_gptq import AutoGPTQForCausalLM
generation_config = GenerationConfig(
temperature=0.1,
top_p=0.3,
top_k=40,
num_beams=1,
bos_token_id=1,
eos_token_id=2,
pad_token_id=0,
max_new_tokens=1024,
min_new_tokens=1,
do_sample=True
)
print("Loading model...")
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=False, trust_remote_code=True)
if args.use_gptq_model:
model = AutoGPTQForCausalLM.from_quantized(args.model_name_or_path, device="cuda:0", trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, device_map="auto", trust_remote_code=True)
print("Start translating...")
start = time.time()
epub_list = []
save_list = []
if args.data_path:
epub_list.append(args.data_path)
save_list.append(os.path.join(args.output_folder, os.path.basename(args.data_path)))
if args.data_folder:
os.makedirs(args.output_folder, exist_ok=True)
for f in os.listdir(args.data_folder):
if f.endswith(".epub"):
epub_list.append(os.path.join(args.data_folder, f))
save_list.append(os.path.join(args.output_folder, f))
for epub_path, save_path in zip(epub_list, save_list):
print(f"translating {epub_path}...")
start_epub = time.time()
if os.path.exists('./temp'):
shutil.rmtree('./temp')
with zipfile.ZipFile(epub_path, 'r') as f:
f.extractall('./temp')
for html_path in find_all_htmls('./temp'):
print(f"\ttranslating {html_path}...")
start_html = time.time()
translated = ''
data_list, file_text = get_html_text_list(html_path, args.text_length)
if len(data_list) == 0:
continue
for text, groups, pre_end in tqdm(data_list):
prompt = get_prompt(text, args.model_version)
output = get_model_response(model, tokenizer, prompt, args.model_version, generation_config, args.text_length)
texts = output.strip().split('\n')
if len(texts) < len(groups):
texts += [''] * (len(groups) - len(texts))
else:
texts = texts[:len(groups)-1] + ['<br/>'.join(texts[len(groups)-1:])]
for t, match in zip(texts, groups):
t = match.group(0).replace(match.group(2), t)
translated += file_text[pre_end:match.start()] + t
pre_end = match.end()
translated += file_text[data_list[-1][1][-1].end():]
with open(html_path, 'w', encoding='utf-8') as f:
f.write(translated)
end_html = time.time()
print(f"\t{html_path} translated, used time: ", end_html-start_html)
with zipfile.ZipFile(save_path, 'w', zipfile.ZIP_DEFLATED) as f:
for file_path in glob.glob(f'./temp/**', recursive=True):
if not os.path.isdir(file_path):
relative_path = os.path.relpath(file_path, './temp')
f.write(file_path, relative_path)
shutil.rmtree('./temp')
end_epub = time.time()
print(f"{epub_path} translated, used time: ", end_epub-start_epub)
end = time.time()
print("translation completed, used time: ", end-start)
if __name__ == "__main__":
main() |