Sakura-13B-Galgame-Archived / translate_epub.py
sakuraumi's picture
Create translate_epub.py
88dd46b
raw
history blame
9.95 kB
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
from argparse import ArgumentParser
import time
import os, re
import fnmatch
import glob
import shutil
import zipfile
from tqdm import tqdm
def find_all_htmls(root_dir):
html_files = []
for foldername, subfolders, filenames in os.walk(root_dir):
for extension in ['*.html', '*.xhtml', '*.htm']:
for filename in fnmatch.filter(filenames, extension):
file_path = os.path.join(foldername, filename)
html_files.append(file_path)
return html_files
def get_html_text_list(epub_path, text_length):
data_list = []
def clean_text(text):
text=re.sub(r'<rt[^>]*?>.*?</rt>', '', text)
text=re.sub(r'<[^>]*>|\n', '', text)
return text
with open(epub_path, 'r', encoding='utf-8') as f:
file_text = f.read()
matches = re.finditer(r'<(h[1-6]|p).*?>(.+?)</\1>', file_text, flags=re.DOTALL)
if not matches:
print("perhaps this file is a struct file")
return data_list, file_text
groups = []
text = ''
pre_end = 0
for match in matches:
if len(text + match.group(2)) <= text_length:
new_text = clean_text(match.group(2))
if new_text:
groups.append(match)
text += '\n' + new_text
else:
data_list.append((text, groups, pre_end))
pre_end = groups[-1].end()
new_text = clean_text(match.group(2))
if new_text:
groups = [match]
text = clean_text(match.group(2))
else:
groups = []
text = ''
if text:
data_list.append((text, groups, pre_end))
# TEST:
# for d in data_list:
# print(f"{len(d[0])}", end=" ")
return data_list, file_text
def get_prompt(input, model_version):
if model_version == '0.5' or model_version == '0.8':
prompt = "<reserved_106>将下面的日文文本翻译成中文:" + input + "<reserved_107>"
return prompt
if model_version == '0.7':
prompt = f"<|im_start|>user\n将下面的日文文本翻译成中文:{input}<|im_end|>\n<|im_start|>assistant\n"
return prompt
if model_version == '0.1':
prompt = "Human: \n将下面的日文文本翻译成中文:" + input + "\n\nAssistant: \n"
return prompt
if model_version == '0.4':
prompt = "User: 将下面的日文文本翻译成中文:" + input + "\nAssistant: "
return prompt
raise ValueError(f"Wrong model version{model_version}, please view https://huggingface.co/sakuraumi/Sakura-13B-Galgame")
def split_response(response, model_version):
response = response.replace("</s>", "")
if model_version == '0.5' or model_version == '0.8':
output = response.split("<reserved_107>")[1]
return output
if model_version == '0.7':
output = response.split("<|im_start|>assistant\n")[1]
return output
if model_version == '0.1':
output = response.split("\n\nAssistant: \n")[1]
return output
if model_version == '0.4':
output = response.split("\nAssistant: ")[1]
return output
raise ValueError(f"Wrong model version{model_version}, please view https://huggingface.co/sakuraumi/Sakura-13B-Galgame")
def detect_degeneration(generation: list, model_version):
if model_version != "0.8":
return False
i = generation.index(196)
generation = generation[i+1:]
if len(generation) >= 1023:
print("model degeneration detected, retrying...")
return True
else:
return False
def get_model_response(model: AutoModelForCausalLM, tokenizer: AutoTokenizer, prompt: str, model_version: str, generation_config: GenerationConfig, text_length: int):
backup_generation_config_stage2 = GenerationConfig(
temperature=1,
top_p=0.6,
top_k=40,
num_beams=1,
bos_token_id=1,
eos_token_id=2,
pad_token_id=0,
max_new_tokens=1024,
min_new_tokens=1,
do_sample=True
)
backup_generation_config_stage3 = GenerationConfig(
top_k=5,
num_beams=1,
bos_token_id=1,
eos_token_id=2,
pad_token_id=0,
max_new_tokens=1024,
min_new_tokens=1,
penalty_alpha=0.3
)
backup_generation_config = [backup_generation_config_stage2, backup_generation_config_stage3]
generation = model.generate(**tokenizer(prompt, return_tensors="pt").to(model.device), generation_config=generation_config)[0]
if len(generation) > 2 * text_length:
stage = 0
while detect_degeneration(list(generation), model_version):
stage += 1
if stage > 2:
print("model degeneration cannot be avoided.")
break
generation = model.generate(**tokenizer(prompt, return_tensors="pt").to(model.device), generation_config=backup_generation_config[stage-1])[0]
response = tokenizer.decode(generation)
output = split_response(response, model_version)
return output
def main():
parser = ArgumentParser()
parser.add_argument("--model_name_or_path", type=str, default="SakuraLLM/Sakura-13B-LNovel-v0.8", help="model huggingface id or local path.")
parser.add_argument("--use_gptq_model", action="store_true", help="whether your model is gptq quantized.")
parser.add_argument("--model_version", type=str, default="0.8", help="model version written on huggingface readme, now we have ['0.1', '0.4', '0.5', '0.7', '0.8']")
parser.add_argument("--data_path", type=str, default="", help="file path of the epub you want to translate.")
parser.add_argument("--data_folder", type=str, default="", help="folder path of the epubs you want to translate.")
parser.add_argument("--output_folder", type=str, default="", help="save folder path of the epubs model translated.")
parser.add_argument("--text_length", type=int, default=512, help="input max length in each inference.")
args = parser.parse_args()
if args.use_gptq_model:
from auto_gptq import AutoGPTQForCausalLM
generation_config = GenerationConfig(
temperature=0.1,
top_p=0.3,
top_k=40,
num_beams=1,
bos_token_id=1,
eos_token_id=2,
pad_token_id=0,
max_new_tokens=1024,
min_new_tokens=1,
do_sample=True
)
print("Loading model...")
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=False, trust_remote_code=True)
if args.use_gptq_model:
model = AutoGPTQForCausalLM.from_quantized(args.model_name_or_path, device="cuda:0", trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, device_map="auto", trust_remote_code=True)
print("Start translating...")
start = time.time()
epub_list = []
save_list = []
if args.data_path:
epub_list.append(args.data_path)
save_list.append(os.path.join(args.output_folder, os.path.basename(args.data_path)))
if args.data_folder:
os.makedirs(args.output_folder, exist_ok=True)
for f in os.listdir(args.data_folder):
if f.endswith(".epub"):
epub_list.append(os.path.join(args.data_folder, f))
save_list.append(os.path.join(args.output_folder, f))
for epub_path, save_path in zip(epub_list, save_list):
print(f"translating {epub_path}...")
start_epub = time.time()
if os.path.exists('./temp'):
shutil.rmtree('./temp')
with zipfile.ZipFile(epub_path, 'r') as f:
f.extractall('./temp')
for html_path in find_all_htmls('./temp'):
print(f"\ttranslating {html_path}...")
start_html = time.time()
translated = ''
data_list, file_text = get_html_text_list(html_path, args.text_length)
if len(data_list) == 0:
continue
for text, groups, pre_end in tqdm(data_list):
prompt = get_prompt(text, args.model_version)
output = get_model_response(model, tokenizer, prompt, args.model_version, generation_config, args.text_length)
texts = output.strip().split('\n')
if len(texts) < len(groups):
texts += [''] * (len(groups) - len(texts))
else:
texts = texts[:len(groups)-1] + ['<br/>'.join(texts[len(groups)-1:])]
for t, match in zip(texts, groups):
t = match.group(0).replace(match.group(2), t)
translated += file_text[pre_end:match.start()] + t
pre_end = match.end()
translated += file_text[data_list[-1][1][-1].end():]
with open(html_path, 'w', encoding='utf-8') as f:
f.write(translated)
end_html = time.time()
print(f"\t{html_path} translated, used time: ", end_html-start_html)
with zipfile.ZipFile(save_path, 'w', zipfile.ZIP_DEFLATED) as f:
for file_path in glob.glob(f'./temp/**', recursive=True):
if not os.path.isdir(file_path):
relative_path = os.path.relpath(file_path, './temp')
f.write(file_path, relative_path)
shutil.rmtree('./temp')
end_epub = time.time()
print(f"{epub_path} translated, used time: ", end_epub-start_epub)
end = time.time()
print("translation completed, used time: ", end-start)
if __name__ == "__main__":
main()