|
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig |
|
from argparse import ArgumentParser |
|
import random |
|
import time |
|
import re |
|
from tqdm import tqdm |
|
|
|
def get_novel_text_list(data_path, text_length): |
|
data_list = list() |
|
with open(data_path, 'r', encoding="utf-8") as f: |
|
data = f.read() |
|
data = data.replace(" ", "") |
|
data_raw = re.sub('\n+', '\n', data) |
|
data = data_raw.strip().split("\n") |
|
i = 0 |
|
while i < len(data): |
|
r = random.randint(int(text_length/2), text_length) |
|
text = "" |
|
while len(text) < r: |
|
if i >= len(data): |
|
break |
|
if len(text) > max(- len(data[i]) + r, 0): |
|
break |
|
else: |
|
text += data[i] + "\n" |
|
i += 1 |
|
text = text.strip() |
|
data_list.append(text) |
|
return data_raw, data_list |
|
|
|
def get_prompt(input, model_version): |
|
if model_version == '0.5' or model_version == '0.8': |
|
prompt = "<reserved_106>将下面的日文文本翻译成中文:" + input + "<reserved_107>" |
|
return prompt |
|
if model_version == '0.7': |
|
prompt = f"<|im_start|>user\n将下面的日文文本翻译成中文:{input}<|im_end|>\n<|im_start|>assistant\n" |
|
return prompt |
|
if model_version == '0.1': |
|
prompt = "Human: \n将下面的日文文本翻译成中文:" + input + "\n\nAssistant: \n" |
|
return prompt |
|
if model_version == '0.4': |
|
prompt = "User: 将下面的日文文本翻译成中文:" + input + "\nAssistant: " |
|
return prompt |
|
|
|
raise ValueError(f"Wrong model version{model_version}, please view https://huggingface.co/sakuraumi/Sakura-13B-Galgame") |
|
|
|
def split_response(response, model_version): |
|
response = response.replace("</s>", "") |
|
if model_version == '0.5' or model_version == '0.8': |
|
output = response.split("<reserved_107>")[1] |
|
return output |
|
if model_version == '0.7': |
|
output = response.split("<|im_start|>assistant\n")[1] |
|
return output |
|
if model_version == '0.1': |
|
output = response.split("\n\nAssistant: \n")[1] |
|
return output |
|
if model_version == '0.4': |
|
output = response.split("\nAssistant: ")[1] |
|
return output |
|
|
|
raise ValueError(f"Wrong model version{model_version}, please view https://huggingface.co/sakuraumi/Sakura-13B-Galgame") |
|
|
|
def get_model_response(model: AutoModelForCausalLM, tokenizer: AutoTokenizer, prompt: str, model_version: str, generation_config: GenerationConfig): |
|
|
|
generation = model.generate(**tokenizer(prompt, return_tensors="pt").to(model.device), generation_config=generation_config)[0] |
|
response = tokenizer.decode(generation) |
|
output = split_response(response, model_version) |
|
return output |
|
|
|
def get_compare_text(source_text, translated_text): |
|
source_text_list = source_text.strip().split("\n") |
|
translated_text_list = translated_text.strip().split("\n") |
|
output_text = "" |
|
if len(source_text_list) != len(translated_text_list): |
|
print("error occurred when output compared text, fallback to output only translated text.") |
|
return translated_text |
|
else: |
|
for i in range(len(source_text_list)): |
|
output_text += source_text_list[i] + "\n" + translated_text_list[i] + "\n\n" |
|
output_text = output_text.strip() |
|
return output_text |
|
|
|
|
|
|
|
def main(): |
|
parser = ArgumentParser() |
|
parser.add_argument("--model_name_or_path", type=str, default="SakuraLLM/Sakura-13B-LNovel-v0.8", help="model huggingface id or local path.") |
|
parser.add_argument("--use_gptq_model", action="store_true", help="whether your model is gptq quantized.") |
|
parser.add_argument("--model_version", type=str, default="0.8", help="model version written on huggingface readme, now we have ['0.1', '0.4', '0.5', '0.7', '0.8']") |
|
parser.add_argument("--data_path", type=str, default="data.txt", help="file path of the text you want to translate.") |
|
parser.add_argument("--output_path", type=str, default="data_translated.txt", help="save path of the text model translated.") |
|
parser.add_argument("--text_length", type=int, default=512, help="input max length in each inference.") |
|
parser.add_argument("--compare_text", action="store_true", help="whether to output with both source text and translated text in order to compare.") |
|
args = parser.parse_args() |
|
|
|
if args.use_gptq_model: |
|
from auto_gptq import AutoGPTQForCausalLM |
|
|
|
generation_config = GenerationConfig( |
|
temperature=0.1, |
|
top_p=0.3, |
|
top_k=40, |
|
num_beams=1, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
pad_token_id=0, |
|
max_new_tokens=1024, |
|
min_new_tokens=1, |
|
do_sample=True |
|
) |
|
|
|
print("loading...") |
|
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=False, trust_remote_code=True) |
|
|
|
if args.use_gptq_model: |
|
model = AutoGPTQForCausalLM.from_quantized(args.model_name_or_path, device="cuda:0", trust_remote_code=True) |
|
else: |
|
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, device_map="auto", trust_remote_code=True) |
|
|
|
print("translating...") |
|
start = time.time() |
|
|
|
data_raw, data_list = get_novel_text_list(args.data_path, args.text_length) |
|
data = "" |
|
for d in tqdm(data_list): |
|
prompt = get_prompt(d, args.model_version) |
|
output = get_model_response(model, tokenizer, prompt, args.model_version, generation_config) |
|
data += output.strip() + "\n" |
|
|
|
end = time.time() |
|
print("translation completed, used time: ", end-start) |
|
|
|
print("saving...") |
|
if args.compare_text: |
|
with open(args.output_path, 'w', encoding='utf-8') as f_w: |
|
f_w.write(get_compare_text(data_raw, data)) |
|
else: |
|
with open(args.output_path, 'w', encoding='utf-8') as f_w: |
|
f_w.write(data) |
|
|
|
print("completed.") |
|
|
|
if __name__ == "__main__": |
|
|
|
main() |