Sakura-13B-Galgame-Archived / translate_novel.py
sakuraumi's picture
Update translate_novel.py
6c3e0fe
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
from argparse import ArgumentParser
import random
import time
import re
from tqdm import tqdm
def get_novel_text_list(data_path, text_length):
data_list = list()
with open(data_path, 'r', encoding="utf-8") as f:
data = f.read()
data = data.replace(" ", "")
data_raw = re.sub('\n+', '\n', data)
data = data_raw.strip().split("\n")
i = 0
while i < len(data):
r = random.randint(int(text_length/2), text_length)
text = ""
while len(text) < r:
if i >= len(data):
break
if len(text) > max(- len(data[i]) + r, 0):
break
else:
text += data[i] + "\n"
i += 1
text = text.strip()
data_list.append(text)
return data_raw, data_list
def get_prompt(input, model_version):
if model_version == '0.5' or model_version == '0.8':
prompt = "<reserved_106>将下面的日文文本翻译成中文:" + input + "<reserved_107>"
return prompt
if model_version == '0.7':
prompt = f"<|im_start|>user\n将下面的日文文本翻译成中文:{input}<|im_end|>\n<|im_start|>assistant\n"
return prompt
if model_version == '0.1':
prompt = "Human: \n将下面的日文文本翻译成中文:" + input + "\n\nAssistant: \n"
return prompt
if model_version == '0.4':
prompt = "User: 将下面的日文文本翻译成中文:" + input + "\nAssistant: "
return prompt
raise ValueError(f"Wrong model version{model_version}, please view https://huggingface.co/sakuraumi/Sakura-13B-Galgame")
def split_response(response, model_version):
response = response.replace("</s>", "")
if model_version == '0.5' or model_version == '0.8':
output = response.split("<reserved_107>")[1]
return output
if model_version == '0.7':
output = response.split("<|im_start|>assistant\n")[1]
return output
if model_version == '0.1':
output = response.split("\n\nAssistant: \n")[1]
return output
if model_version == '0.4':
output = response.split("\nAssistant: ")[1]
return output
raise ValueError(f"Wrong model version{model_version}, please view https://huggingface.co/sakuraumi/Sakura-13B-Galgame")
def get_model_response(model: AutoModelForCausalLM, tokenizer: AutoTokenizer, prompt: str, model_version: str, generation_config: GenerationConfig):
generation = model.generate(**tokenizer(prompt, return_tensors="pt").to(model.device), generation_config=generation_config)[0]
response = tokenizer.decode(generation)
output = split_response(response, model_version)
return output
def get_compare_text(source_text, translated_text):
source_text_list = source_text.strip().split("\n")
translated_text_list = translated_text.strip().split("\n")
output_text = ""
if len(source_text_list) != len(translated_text_list):
print("error occurred when output compared text, fallback to output only translated text.")
return translated_text
else:
for i in range(len(source_text_list)):
output_text += source_text_list[i] + "\n" + translated_text_list[i] + "\n\n"
output_text = output_text.strip()
return output_text
def main():
parser = ArgumentParser()
parser.add_argument("--model_name_or_path", type=str, default="SakuraLLM/Sakura-13B-LNovel-v0.8", help="model huggingface id or local path.")
parser.add_argument("--use_gptq_model", action="store_true", help="whether your model is gptq quantized.")
parser.add_argument("--model_version", type=str, default="0.8", help="model version written on huggingface readme, now we have ['0.1', '0.4', '0.5', '0.7', '0.8']")
parser.add_argument("--data_path", type=str, default="data.txt", help="file path of the text you want to translate.")
parser.add_argument("--output_path", type=str, default="data_translated.txt", help="save path of the text model translated.")
parser.add_argument("--text_length", type=int, default=512, help="input max length in each inference.")
parser.add_argument("--compare_text", action="store_true", help="whether to output with both source text and translated text in order to compare.")
args = parser.parse_args()
if args.use_gptq_model:
from auto_gptq import AutoGPTQForCausalLM
generation_config = GenerationConfig(
temperature=0.1,
top_p=0.3,
top_k=40,
num_beams=1,
bos_token_id=1,
eos_token_id=2,
pad_token_id=0,
max_new_tokens=1024,
min_new_tokens=1,
do_sample=True
)
print("loading...")
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=False, trust_remote_code=True)
if args.use_gptq_model:
model = AutoGPTQForCausalLM.from_quantized(args.model_name_or_path, device="cuda:0", trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, device_map="auto", trust_remote_code=True)
print("translating...")
start = time.time()
data_raw, data_list = get_novel_text_list(args.data_path, args.text_length)
data = ""
for d in tqdm(data_list):
prompt = get_prompt(d, args.model_version)
output = get_model_response(model, tokenizer, prompt, args.model_version, generation_config)
data += output.strip() + "\n"
end = time.time()
print("translation completed, used time: ", end-start)
print("saving...")
if args.compare_text:
with open(args.output_path, 'w', encoding='utf-8') as f_w:
f_w.write(get_compare_text(data_raw, data))
else:
with open(args.output_path, 'w', encoding='utf-8') as f_w:
f_w.write(data)
print("completed.")
if __name__ == "__main__":
main()