Create translate_novel.py
Browse files- translate_novel.py +146 -0
translate_novel.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
import random
|
4 |
+
import time
|
5 |
+
import re
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
def get_novel_text_list(data_path, text_length):
|
9 |
+
data_list = list()
|
10 |
+
with open(data_path, 'r', encoding="utf-8") as f:
|
11 |
+
data = f.read()
|
12 |
+
data = data.replace(" ", "")
|
13 |
+
data_raw = re.sub('\n+', '\n', data)
|
14 |
+
data = data_raw.strip().split("\n")
|
15 |
+
i = 0
|
16 |
+
while i < len(data):
|
17 |
+
r = random.randint(int(text_length/2), text_length)
|
18 |
+
text = ""
|
19 |
+
while len(text) < r:
|
20 |
+
if i >= len(data):
|
21 |
+
break
|
22 |
+
if len(text) > max(- len(data[i]) + r, 0):
|
23 |
+
break
|
24 |
+
else:
|
25 |
+
text += data[i] + "\n"
|
26 |
+
i += 1
|
27 |
+
text = text.strip()
|
28 |
+
data_list.append(text)
|
29 |
+
return data_raw, data_list
|
30 |
+
|
31 |
+
def get_prompt(input, model_version):
|
32 |
+
if model_version == '0.5' or model_version == '0.8':
|
33 |
+
prompt = "<reserved_106>将下面的日文文本翻译成中文:" + input + "<reserved_107>"
|
34 |
+
return prompt
|
35 |
+
if model_version == '0.7':
|
36 |
+
prompt = f"<|im_start|>user\n将下面的日文文本翻译成中文:{input}<|im_end|>\n<|im_start|>assistant\n"
|
37 |
+
return prompt
|
38 |
+
if model_version == '0.1':
|
39 |
+
prompt = "Human: \n将下面的日文文本翻译成中文:" + input + "\n\nAssistant: \n"
|
40 |
+
return prompt
|
41 |
+
if model_version == '0.4':
|
42 |
+
prompt = "User: 将下面的日文文本翻译成中文:" + input + "\nAssistant: "
|
43 |
+
return prompt
|
44 |
+
|
45 |
+
raise ValueError(f"Wrong model version{model_version}, please view https://huggingface.co/sakuraumi/Sakura-13B-Galgame")
|
46 |
+
|
47 |
+
def split_response(response, model_version):
|
48 |
+
response = response.replace("</s>", "")
|
49 |
+
if model_version == '0.5' or model_version == '0.8':
|
50 |
+
output = response.split("<reserved_107>")[1]
|
51 |
+
return output
|
52 |
+
if model_version == '0.7':
|
53 |
+
output = response.split("<|im_start|>assistant\n")[1]
|
54 |
+
return output
|
55 |
+
if model_version == '0.1':
|
56 |
+
output = response.split("\n\nAssistant: \n")[1]
|
57 |
+
return output
|
58 |
+
if model_version == '0.4':
|
59 |
+
output = response.split("\nAssistant: ")[1]
|
60 |
+
return output
|
61 |
+
|
62 |
+
raise ValueError(f"Wrong model version{model_version}, please view https://huggingface.co/sakuraumi/Sakura-13B-Galgame")
|
63 |
+
|
64 |
+
def get_model_response(model: AutoModelForCausalLM, tokenizer: AutoTokenizer, prompt: str, model_version: str, generation_config: GenerationConfig):
|
65 |
+
|
66 |
+
generation = model.generate(**tokenizer(prompt, return_tensors="pt").to(model.device), generation_config=generation_config)[0]
|
67 |
+
response = tokenizer.decode(generation)
|
68 |
+
output = split_response(response, model_version)
|
69 |
+
return output
|
70 |
+
|
71 |
+
def get_compare_text(source_text, translated_text):
|
72 |
+
source_text_list = source_text.strip().split("\n")
|
73 |
+
translated_text_list = translated_text.strip().split("\n")
|
74 |
+
output_text = ""
|
75 |
+
if len(source_text_list) != len(translated_text_list):
|
76 |
+
print("error occurred when output compared text, fallback to output only translated text.")
|
77 |
+
return translated_text
|
78 |
+
else:
|
79 |
+
for i in range(len(source_text_list)):
|
80 |
+
output_text += source_text_list[i] + "\n" + translated_text_list[i] + "\n\n"
|
81 |
+
output_text = output_text.strip()
|
82 |
+
return output_text
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
def main():
|
87 |
+
parser = ArgumentParser()
|
88 |
+
parser.add_argument("--model_name_or_path", type=str, default="SakuraLLM/Sakura-13B-LNovel-v0.8", help="model huggingface id or local path.")
|
89 |
+
parser.add_argument("--use_gptq_model", action="store_true", help="whether your model is gptq quantized.")
|
90 |
+
parser.add_argument("--model_version", type=str, default="0.8", help="model version written on huggingface readme, now we have ['0.1', '0.4', '0.5', '0.7', '0.8']")
|
91 |
+
parser.add_argument("--data_path", type=str, default="data.txt", help="file path of the text you want to translate.")
|
92 |
+
parser.add_argument("--output_path", type=str, default="data_translated.txt", help="save path of the text model translated.")
|
93 |
+
parser.add_argument("--text_length", type=int, default=512, help="input max length in each inference.")
|
94 |
+
parser.add_argument("--compare_text", action="store_true", help="whether to output with both source text and translated text in order to compare.")
|
95 |
+
args = parser.parse_args()
|
96 |
+
|
97 |
+
if args.use_gptq_model:
|
98 |
+
from auto_gptq import AutoGPTQForCausalLM
|
99 |
+
|
100 |
+
generation_config = GenerationConfig(
|
101 |
+
temperature=1.0,
|
102 |
+
top_p=0.3,
|
103 |
+
top_k=40,
|
104 |
+
num_beams=1,
|
105 |
+
bos_token_id=1,
|
106 |
+
eos_token_id=2,
|
107 |
+
pad_token_id=0,
|
108 |
+
max_new_tokens=1024,
|
109 |
+
min_new_tokens=1,
|
110 |
+
do_sample=True
|
111 |
+
)
|
112 |
+
|
113 |
+
print("loading...")
|
114 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=False, trust_remote_code=True)
|
115 |
+
|
116 |
+
if args.use_gptq_model:
|
117 |
+
model = AutoGPTQForCausalLM.from_quantized(args.model_name_or_path, device="cuda:0", trust_remote_code=True)
|
118 |
+
else:
|
119 |
+
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, device_map="auto", trust_remote_code=True)
|
120 |
+
|
121 |
+
print("translating...")
|
122 |
+
start = time.time()
|
123 |
+
|
124 |
+
data_raw, data_list = get_novel_text_list(args.data_path, args.text_length)
|
125 |
+
data = ""
|
126 |
+
for d in tqdm(data_list):
|
127 |
+
prompt = get_prompt(d, args.model_version)
|
128 |
+
output = get_model_response(model, tokenizer, prompt, args.model_version, generation_config)
|
129 |
+
data += output.strip() + "\n"
|
130 |
+
|
131 |
+
end = time.time()
|
132 |
+
print("translation completed, used time: ", end-start)
|
133 |
+
|
134 |
+
print("saving...")
|
135 |
+
if args.compare_text:
|
136 |
+
with open(args.output_path, 'w', encoding='utf-8') as f_w:
|
137 |
+
f_w.write(get_compare_text(data_raw, data))
|
138 |
+
else:
|
139 |
+
with open(args.output_path, 'w', encoding='utf-8') as f_w:
|
140 |
+
f_w.write(data)
|
141 |
+
|
142 |
+
print("completed.")
|
143 |
+
|
144 |
+
if __name__ == "__main__":
|
145 |
+
|
146 |
+
main()
|