sallywww commited on
Commit
a47a2e1
1 Parent(s): de35d16

First model version

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +202 -0
  2. adapter_config.json +29 -0
  3. adapter_model.safetensors +3 -0
  4. checkpoint-1000/README.md +202 -0
  5. checkpoint-1000/adapter_config.json +29 -0
  6. checkpoint-1000/adapter_model.safetensors +3 -0
  7. checkpoint-1000/optimizer.pt +3 -0
  8. checkpoint-1000/rng_state.pth +3 -0
  9. checkpoint-1000/scheduler.pt +3 -0
  10. checkpoint-1000/trainer_state.json +371 -0
  11. checkpoint-1000/training_args.bin +3 -0
  12. checkpoint-1500/README.md +202 -0
  13. checkpoint-1500/adapter_config.json +29 -0
  14. checkpoint-1500/adapter_model.safetensors +3 -0
  15. checkpoint-1500/optimizer.pt +3 -0
  16. checkpoint-1500/rng_state.pth +3 -0
  17. checkpoint-1500/scheduler.pt +3 -0
  18. checkpoint-1500/trainer_state.json +546 -0
  19. checkpoint-1500/training_args.bin +3 -0
  20. checkpoint-2000/README.md +202 -0
  21. checkpoint-2000/adapter_config.json +29 -0
  22. checkpoint-2000/adapter_model.safetensors +3 -0
  23. checkpoint-2000/optimizer.pt +3 -0
  24. checkpoint-2000/rng_state.pth +3 -0
  25. checkpoint-2000/scheduler.pt +3 -0
  26. checkpoint-2000/trainer_state.json +721 -0
  27. checkpoint-2000/training_args.bin +3 -0
  28. checkpoint-2500/README.md +202 -0
  29. checkpoint-2500/adapter_config.json +29 -0
  30. checkpoint-2500/adapter_model.safetensors +3 -0
  31. checkpoint-2500/optimizer.pt +3 -0
  32. checkpoint-2500/rng_state.pth +3 -0
  33. checkpoint-2500/scheduler.pt +3 -0
  34. checkpoint-2500/trainer_state.json +896 -0
  35. checkpoint-2500/training_args.bin +3 -0
  36. checkpoint-3000/README.md +202 -0
  37. checkpoint-3000/adapter_config.json +29 -0
  38. checkpoint-3000/adapter_model.safetensors +3 -0
  39. checkpoint-3000/optimizer.pt +3 -0
  40. checkpoint-3000/rng_state.pth +3 -0
  41. checkpoint-3000/scheduler.pt +3 -0
  42. checkpoint-3000/trainer_state.json +1071 -0
  43. checkpoint-3000/training_args.bin +3 -0
  44. checkpoint-3500/README.md +202 -0
  45. checkpoint-3500/adapter_config.json +29 -0
  46. checkpoint-3500/adapter_model.safetensors +3 -0
  47. checkpoint-3500/optimizer.pt +3 -0
  48. checkpoint-3500/rng_state.pth +3 -0
  49. checkpoint-3500/scheduler.pt +3 -0
  50. checkpoint-3500/trainer_state.json +1246 -0
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: sallywww/Llama-7B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.9.1.dev0
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "sallywww/Llama-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:322995eee76b8c0f37eec88c8db677a2dadc58f888a5f41b0dbd241ec82ea055
3
+ size 16794200
checkpoint-1000/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: sallywww/Llama-7B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.9.1.dev0
checkpoint-1000/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "sallywww/Llama-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-1000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61b2c604ead0cf0a1d825a8b61a4096f87be896513c953a8ade9aee0548f1922
3
+ size 16794200
checkpoint-1000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7e36dd6b116bdbd98eafdce3f9bdbacc927e9253396028875a56311f9bfdbe4
3
+ size 33662074
checkpoint-1000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2706a49fa21b5a44ba570d558ac14d4038598b6128b98b01b3aa7aaaf0db19c5
3
+ size 14244
checkpoint-1000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc1314a31cf86530b6d57df23e6c90a09bc1cdb44a55906247fc495679415522
3
+ size 1064
checkpoint-1000/trainer_state.json ADDED
@@ -0,0 +1,371 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 5.612065941774816,
5
+ "eval_steps": 500,
6
+ "global_step": 1000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.11,
13
+ "grad_norm": 0.5909375548362732,
14
+ "learning_rate": 1.9932584269662923e-05,
15
+ "loss": 2.0237,
16
+ "step": 20
17
+ },
18
+ {
19
+ "epoch": 0.22,
20
+ "grad_norm": 0.5826025009155273,
21
+ "learning_rate": 1.9857677902621722e-05,
22
+ "loss": 1.9306,
23
+ "step": 40
24
+ },
25
+ {
26
+ "epoch": 0.34,
27
+ "grad_norm": 0.5491089820861816,
28
+ "learning_rate": 1.9782771535580525e-05,
29
+ "loss": 1.7959,
30
+ "step": 60
31
+ },
32
+ {
33
+ "epoch": 0.45,
34
+ "grad_norm": 1.362810730934143,
35
+ "learning_rate": 1.970786516853933e-05,
36
+ "loss": 1.6599,
37
+ "step": 80
38
+ },
39
+ {
40
+ "epoch": 0.56,
41
+ "grad_norm": 1.4427486658096313,
42
+ "learning_rate": 1.963295880149813e-05,
43
+ "loss": 1.5685,
44
+ "step": 100
45
+ },
46
+ {
47
+ "epoch": 0.67,
48
+ "grad_norm": 0.9993659257888794,
49
+ "learning_rate": 1.956179775280899e-05,
50
+ "loss": 1.4621,
51
+ "step": 120
52
+ },
53
+ {
54
+ "epoch": 0.79,
55
+ "grad_norm": 1.614562749862671,
56
+ "learning_rate": 1.9486891385767793e-05,
57
+ "loss": 1.31,
58
+ "step": 140
59
+ },
60
+ {
61
+ "epoch": 0.9,
62
+ "grad_norm": 1.1975798606872559,
63
+ "learning_rate": 1.9411985018726593e-05,
64
+ "loss": 1.2322,
65
+ "step": 160
66
+ },
67
+ {
68
+ "epoch": 1.01,
69
+ "grad_norm": 0.7684128880500793,
70
+ "learning_rate": 1.9337078651685396e-05,
71
+ "loss": 1.1361,
72
+ "step": 180
73
+ },
74
+ {
75
+ "epoch": 1.12,
76
+ "grad_norm": 0.9336960911750793,
77
+ "learning_rate": 1.9262172284644195e-05,
78
+ "loss": 1.0797,
79
+ "step": 200
80
+ },
81
+ {
82
+ "epoch": 1.23,
83
+ "grad_norm": 0.8471770882606506,
84
+ "learning_rate": 1.9187265917603e-05,
85
+ "loss": 1.0368,
86
+ "step": 220
87
+ },
88
+ {
89
+ "epoch": 1.35,
90
+ "grad_norm": 1.111340045928955,
91
+ "learning_rate": 1.9112359550561798e-05,
92
+ "loss": 0.9738,
93
+ "step": 240
94
+ },
95
+ {
96
+ "epoch": 1.46,
97
+ "grad_norm": 0.8093781471252441,
98
+ "learning_rate": 1.90374531835206e-05,
99
+ "loss": 0.9494,
100
+ "step": 260
101
+ },
102
+ {
103
+ "epoch": 1.57,
104
+ "grad_norm": 0.8438062071800232,
105
+ "learning_rate": 1.89625468164794e-05,
106
+ "loss": 0.9276,
107
+ "step": 280
108
+ },
109
+ {
110
+ "epoch": 1.68,
111
+ "grad_norm": 0.9896701574325562,
112
+ "learning_rate": 1.8887640449438204e-05,
113
+ "loss": 0.8656,
114
+ "step": 300
115
+ },
116
+ {
117
+ "epoch": 1.8,
118
+ "grad_norm": 0.8278244137763977,
119
+ "learning_rate": 1.8812734082397007e-05,
120
+ "loss": 0.8431,
121
+ "step": 320
122
+ },
123
+ {
124
+ "epoch": 1.91,
125
+ "grad_norm": 0.931291937828064,
126
+ "learning_rate": 1.8737827715355807e-05,
127
+ "loss": 0.7945,
128
+ "step": 340
129
+ },
130
+ {
131
+ "epoch": 2.02,
132
+ "grad_norm": 1.21769380569458,
133
+ "learning_rate": 1.866292134831461e-05,
134
+ "loss": 0.7647,
135
+ "step": 360
136
+ },
137
+ {
138
+ "epoch": 2.13,
139
+ "grad_norm": 3.5183286666870117,
140
+ "learning_rate": 1.858801498127341e-05,
141
+ "loss": 0.7497,
142
+ "step": 380
143
+ },
144
+ {
145
+ "epoch": 2.24,
146
+ "grad_norm": 1.1153030395507812,
147
+ "learning_rate": 1.8513108614232212e-05,
148
+ "loss": 0.7507,
149
+ "step": 400
150
+ },
151
+ {
152
+ "epoch": 2.36,
153
+ "grad_norm": 1.0140526294708252,
154
+ "learning_rate": 1.8438202247191012e-05,
155
+ "loss": 0.7415,
156
+ "step": 420
157
+ },
158
+ {
159
+ "epoch": 2.47,
160
+ "grad_norm": 1.4395232200622559,
161
+ "learning_rate": 1.8363295880149815e-05,
162
+ "loss": 0.6947,
163
+ "step": 440
164
+ },
165
+ {
166
+ "epoch": 2.58,
167
+ "grad_norm": 1.4253089427947998,
168
+ "learning_rate": 1.8288389513108615e-05,
169
+ "loss": 0.7429,
170
+ "step": 460
171
+ },
172
+ {
173
+ "epoch": 2.69,
174
+ "grad_norm": 1.3152351379394531,
175
+ "learning_rate": 1.8213483146067418e-05,
176
+ "loss": 0.7363,
177
+ "step": 480
178
+ },
179
+ {
180
+ "epoch": 2.81,
181
+ "grad_norm": 2.5935957431793213,
182
+ "learning_rate": 1.8138576779026217e-05,
183
+ "loss": 0.6486,
184
+ "step": 500
185
+ },
186
+ {
187
+ "epoch": 2.92,
188
+ "grad_norm": 3.929158926010132,
189
+ "learning_rate": 1.806367041198502e-05,
190
+ "loss": 0.6395,
191
+ "step": 520
192
+ },
193
+ {
194
+ "epoch": 3.03,
195
+ "grad_norm": 1.7316572666168213,
196
+ "learning_rate": 1.7988764044943823e-05,
197
+ "loss": 0.664,
198
+ "step": 540
199
+ },
200
+ {
201
+ "epoch": 3.14,
202
+ "grad_norm": 1.3388841152191162,
203
+ "learning_rate": 1.7913857677902623e-05,
204
+ "loss": 0.6469,
205
+ "step": 560
206
+ },
207
+ {
208
+ "epoch": 3.25,
209
+ "grad_norm": 1.5258549451828003,
210
+ "learning_rate": 1.7838951310861426e-05,
211
+ "loss": 0.6662,
212
+ "step": 580
213
+ },
214
+ {
215
+ "epoch": 3.37,
216
+ "grad_norm": 1.5486094951629639,
217
+ "learning_rate": 1.7764044943820226e-05,
218
+ "loss": 0.566,
219
+ "step": 600
220
+ },
221
+ {
222
+ "epoch": 3.48,
223
+ "grad_norm": 1.5657902956008911,
224
+ "learning_rate": 1.768913857677903e-05,
225
+ "loss": 0.6166,
226
+ "step": 620
227
+ },
228
+ {
229
+ "epoch": 3.59,
230
+ "grad_norm": 1.5971391201019287,
231
+ "learning_rate": 1.761423220973783e-05,
232
+ "loss": 0.5973,
233
+ "step": 640
234
+ },
235
+ {
236
+ "epoch": 3.7,
237
+ "grad_norm": 1.333030343055725,
238
+ "learning_rate": 1.753932584269663e-05,
239
+ "loss": 0.6117,
240
+ "step": 660
241
+ },
242
+ {
243
+ "epoch": 3.82,
244
+ "grad_norm": 1.4425445795059204,
245
+ "learning_rate": 1.746441947565543e-05,
246
+ "loss": 0.5702,
247
+ "step": 680
248
+ },
249
+ {
250
+ "epoch": 3.93,
251
+ "grad_norm": 1.4773032665252686,
252
+ "learning_rate": 1.7389513108614234e-05,
253
+ "loss": 0.5465,
254
+ "step": 700
255
+ },
256
+ {
257
+ "epoch": 4.04,
258
+ "grad_norm": 1.3328267335891724,
259
+ "learning_rate": 1.7314606741573034e-05,
260
+ "loss": 0.5379,
261
+ "step": 720
262
+ },
263
+ {
264
+ "epoch": 4.15,
265
+ "grad_norm": 1.6961455345153809,
266
+ "learning_rate": 1.7239700374531837e-05,
267
+ "loss": 0.5492,
268
+ "step": 740
269
+ },
270
+ {
271
+ "epoch": 4.27,
272
+ "grad_norm": 1.4636189937591553,
273
+ "learning_rate": 1.7164794007490637e-05,
274
+ "loss": 0.547,
275
+ "step": 760
276
+ },
277
+ {
278
+ "epoch": 4.38,
279
+ "grad_norm": 2.1686649322509766,
280
+ "learning_rate": 1.708988764044944e-05,
281
+ "loss": 0.5424,
282
+ "step": 780
283
+ },
284
+ {
285
+ "epoch": 4.49,
286
+ "grad_norm": 1.219388723373413,
287
+ "learning_rate": 1.7014981273408243e-05,
288
+ "loss": 0.5373,
289
+ "step": 800
290
+ },
291
+ {
292
+ "epoch": 4.6,
293
+ "grad_norm": 1.5566452741622925,
294
+ "learning_rate": 1.6940074906367042e-05,
295
+ "loss": 0.4944,
296
+ "step": 820
297
+ },
298
+ {
299
+ "epoch": 4.71,
300
+ "grad_norm": 1.598917841911316,
301
+ "learning_rate": 1.6865168539325845e-05,
302
+ "loss": 0.5036,
303
+ "step": 840
304
+ },
305
+ {
306
+ "epoch": 4.83,
307
+ "grad_norm": 1.5281039476394653,
308
+ "learning_rate": 1.6790262172284645e-05,
309
+ "loss": 0.5215,
310
+ "step": 860
311
+ },
312
+ {
313
+ "epoch": 4.94,
314
+ "grad_norm": 1.7123130559921265,
315
+ "learning_rate": 1.6715355805243448e-05,
316
+ "loss": 0.5362,
317
+ "step": 880
318
+ },
319
+ {
320
+ "epoch": 5.05,
321
+ "grad_norm": 1.543447732925415,
322
+ "learning_rate": 1.6640449438202248e-05,
323
+ "loss": 0.5379,
324
+ "step": 900
325
+ },
326
+ {
327
+ "epoch": 5.16,
328
+ "grad_norm": 2.4190192222595215,
329
+ "learning_rate": 1.656554307116105e-05,
330
+ "loss": 0.4921,
331
+ "step": 920
332
+ },
333
+ {
334
+ "epoch": 5.28,
335
+ "grad_norm": 2.190906047821045,
336
+ "learning_rate": 1.649063670411985e-05,
337
+ "loss": 0.4652,
338
+ "step": 940
339
+ },
340
+ {
341
+ "epoch": 5.39,
342
+ "grad_norm": 2.113476514816284,
343
+ "learning_rate": 1.6415730337078653e-05,
344
+ "loss": 0.4914,
345
+ "step": 960
346
+ },
347
+ {
348
+ "epoch": 5.5,
349
+ "grad_norm": 1.8785656690597534,
350
+ "learning_rate": 1.6340823970037453e-05,
351
+ "loss": 0.5135,
352
+ "step": 980
353
+ },
354
+ {
355
+ "epoch": 5.61,
356
+ "grad_norm": 1.3745977878570557,
357
+ "learning_rate": 1.6265917602996256e-05,
358
+ "loss": 0.4697,
359
+ "step": 1000
360
+ }
361
+ ],
362
+ "logging_steps": 20,
363
+ "max_steps": 5340,
364
+ "num_input_tokens_seen": 0,
365
+ "num_train_epochs": 30,
366
+ "save_steps": 500,
367
+ "total_flos": 2.5991277871104e+18,
368
+ "train_batch_size": 1,
369
+ "trial_name": null,
370
+ "trial_params": null
371
+ }
checkpoint-1000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f06c12b5819a4aa76501d6843eae3aabbe49b1a33a2903a44bc34146ab4a74b6
3
+ size 4920
checkpoint-1500/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: sallywww/Llama-7B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.9.1.dev0
checkpoint-1500/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "sallywww/Llama-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-1500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ff31695298b9be3b6fcd71ccf123f331b736ec12d764be1ee04aeeacf3720f2
3
+ size 16794200
checkpoint-1500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:559f0868d58974fef2ee217d4246fb98b4e13020948ac8a45cebf261e9f6b1f5
3
+ size 33662074
checkpoint-1500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f46b1b617ab078d379f02aa6edd73ab2de2a6998f4b34b6d2892f59c64fc3cf
3
+ size 14244
checkpoint-1500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b52b722be306a1f27bd6fadd28cb76f1979dcd76e35029a0bc5191bb947e1404
3
+ size 1064
checkpoint-1500/trainer_state.json ADDED
@@ -0,0 +1,546 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 8.418098912662224,
5
+ "eval_steps": 500,
6
+ "global_step": 1500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.11,
13
+ "grad_norm": 0.5909375548362732,
14
+ "learning_rate": 1.9932584269662923e-05,
15
+ "loss": 2.0237,
16
+ "step": 20
17
+ },
18
+ {
19
+ "epoch": 0.22,
20
+ "grad_norm": 0.5826025009155273,
21
+ "learning_rate": 1.9857677902621722e-05,
22
+ "loss": 1.9306,
23
+ "step": 40
24
+ },
25
+ {
26
+ "epoch": 0.34,
27
+ "grad_norm": 0.5491089820861816,
28
+ "learning_rate": 1.9782771535580525e-05,
29
+ "loss": 1.7959,
30
+ "step": 60
31
+ },
32
+ {
33
+ "epoch": 0.45,
34
+ "grad_norm": 1.362810730934143,
35
+ "learning_rate": 1.970786516853933e-05,
36
+ "loss": 1.6599,
37
+ "step": 80
38
+ },
39
+ {
40
+ "epoch": 0.56,
41
+ "grad_norm": 1.4427486658096313,
42
+ "learning_rate": 1.963295880149813e-05,
43
+ "loss": 1.5685,
44
+ "step": 100
45
+ },
46
+ {
47
+ "epoch": 0.67,
48
+ "grad_norm": 0.9993659257888794,
49
+ "learning_rate": 1.956179775280899e-05,
50
+ "loss": 1.4621,
51
+ "step": 120
52
+ },
53
+ {
54
+ "epoch": 0.79,
55
+ "grad_norm": 1.614562749862671,
56
+ "learning_rate": 1.9486891385767793e-05,
57
+ "loss": 1.31,
58
+ "step": 140
59
+ },
60
+ {
61
+ "epoch": 0.9,
62
+ "grad_norm": 1.1975798606872559,
63
+ "learning_rate": 1.9411985018726593e-05,
64
+ "loss": 1.2322,
65
+ "step": 160
66
+ },
67
+ {
68
+ "epoch": 1.01,
69
+ "grad_norm": 0.7684128880500793,
70
+ "learning_rate": 1.9337078651685396e-05,
71
+ "loss": 1.1361,
72
+ "step": 180
73
+ },
74
+ {
75
+ "epoch": 1.12,
76
+ "grad_norm": 0.9336960911750793,
77
+ "learning_rate": 1.9262172284644195e-05,
78
+ "loss": 1.0797,
79
+ "step": 200
80
+ },
81
+ {
82
+ "epoch": 1.23,
83
+ "grad_norm": 0.8471770882606506,
84
+ "learning_rate": 1.9187265917603e-05,
85
+ "loss": 1.0368,
86
+ "step": 220
87
+ },
88
+ {
89
+ "epoch": 1.35,
90
+ "grad_norm": 1.111340045928955,
91
+ "learning_rate": 1.9112359550561798e-05,
92
+ "loss": 0.9738,
93
+ "step": 240
94
+ },
95
+ {
96
+ "epoch": 1.46,
97
+ "grad_norm": 0.8093781471252441,
98
+ "learning_rate": 1.90374531835206e-05,
99
+ "loss": 0.9494,
100
+ "step": 260
101
+ },
102
+ {
103
+ "epoch": 1.57,
104
+ "grad_norm": 0.8438062071800232,
105
+ "learning_rate": 1.89625468164794e-05,
106
+ "loss": 0.9276,
107
+ "step": 280
108
+ },
109
+ {
110
+ "epoch": 1.68,
111
+ "grad_norm": 0.9896701574325562,
112
+ "learning_rate": 1.8887640449438204e-05,
113
+ "loss": 0.8656,
114
+ "step": 300
115
+ },
116
+ {
117
+ "epoch": 1.8,
118
+ "grad_norm": 0.8278244137763977,
119
+ "learning_rate": 1.8812734082397007e-05,
120
+ "loss": 0.8431,
121
+ "step": 320
122
+ },
123
+ {
124
+ "epoch": 1.91,
125
+ "grad_norm": 0.931291937828064,
126
+ "learning_rate": 1.8737827715355807e-05,
127
+ "loss": 0.7945,
128
+ "step": 340
129
+ },
130
+ {
131
+ "epoch": 2.02,
132
+ "grad_norm": 1.21769380569458,
133
+ "learning_rate": 1.866292134831461e-05,
134
+ "loss": 0.7647,
135
+ "step": 360
136
+ },
137
+ {
138
+ "epoch": 2.13,
139
+ "grad_norm": 3.5183286666870117,
140
+ "learning_rate": 1.858801498127341e-05,
141
+ "loss": 0.7497,
142
+ "step": 380
143
+ },
144
+ {
145
+ "epoch": 2.24,
146
+ "grad_norm": 1.1153030395507812,
147
+ "learning_rate": 1.8513108614232212e-05,
148
+ "loss": 0.7507,
149
+ "step": 400
150
+ },
151
+ {
152
+ "epoch": 2.36,
153
+ "grad_norm": 1.0140526294708252,
154
+ "learning_rate": 1.8438202247191012e-05,
155
+ "loss": 0.7415,
156
+ "step": 420
157
+ },
158
+ {
159
+ "epoch": 2.47,
160
+ "grad_norm": 1.4395232200622559,
161
+ "learning_rate": 1.8363295880149815e-05,
162
+ "loss": 0.6947,
163
+ "step": 440
164
+ },
165
+ {
166
+ "epoch": 2.58,
167
+ "grad_norm": 1.4253089427947998,
168
+ "learning_rate": 1.8288389513108615e-05,
169
+ "loss": 0.7429,
170
+ "step": 460
171
+ },
172
+ {
173
+ "epoch": 2.69,
174
+ "grad_norm": 1.3152351379394531,
175
+ "learning_rate": 1.8213483146067418e-05,
176
+ "loss": 0.7363,
177
+ "step": 480
178
+ },
179
+ {
180
+ "epoch": 2.81,
181
+ "grad_norm": 2.5935957431793213,
182
+ "learning_rate": 1.8138576779026217e-05,
183
+ "loss": 0.6486,
184
+ "step": 500
185
+ },
186
+ {
187
+ "epoch": 2.92,
188
+ "grad_norm": 3.929158926010132,
189
+ "learning_rate": 1.806367041198502e-05,
190
+ "loss": 0.6395,
191
+ "step": 520
192
+ },
193
+ {
194
+ "epoch": 3.03,
195
+ "grad_norm": 1.7316572666168213,
196
+ "learning_rate": 1.7988764044943823e-05,
197
+ "loss": 0.664,
198
+ "step": 540
199
+ },
200
+ {
201
+ "epoch": 3.14,
202
+ "grad_norm": 1.3388841152191162,
203
+ "learning_rate": 1.7913857677902623e-05,
204
+ "loss": 0.6469,
205
+ "step": 560
206
+ },
207
+ {
208
+ "epoch": 3.25,
209
+ "grad_norm": 1.5258549451828003,
210
+ "learning_rate": 1.7838951310861426e-05,
211
+ "loss": 0.6662,
212
+ "step": 580
213
+ },
214
+ {
215
+ "epoch": 3.37,
216
+ "grad_norm": 1.5486094951629639,
217
+ "learning_rate": 1.7764044943820226e-05,
218
+ "loss": 0.566,
219
+ "step": 600
220
+ },
221
+ {
222
+ "epoch": 3.48,
223
+ "grad_norm": 1.5657902956008911,
224
+ "learning_rate": 1.768913857677903e-05,
225
+ "loss": 0.6166,
226
+ "step": 620
227
+ },
228
+ {
229
+ "epoch": 3.59,
230
+ "grad_norm": 1.5971391201019287,
231
+ "learning_rate": 1.761423220973783e-05,
232
+ "loss": 0.5973,
233
+ "step": 640
234
+ },
235
+ {
236
+ "epoch": 3.7,
237
+ "grad_norm": 1.333030343055725,
238
+ "learning_rate": 1.753932584269663e-05,
239
+ "loss": 0.6117,
240
+ "step": 660
241
+ },
242
+ {
243
+ "epoch": 3.82,
244
+ "grad_norm": 1.4425445795059204,
245
+ "learning_rate": 1.746441947565543e-05,
246
+ "loss": 0.5702,
247
+ "step": 680
248
+ },
249
+ {
250
+ "epoch": 3.93,
251
+ "grad_norm": 1.4773032665252686,
252
+ "learning_rate": 1.7389513108614234e-05,
253
+ "loss": 0.5465,
254
+ "step": 700
255
+ },
256
+ {
257
+ "epoch": 4.04,
258
+ "grad_norm": 1.3328267335891724,
259
+ "learning_rate": 1.7314606741573034e-05,
260
+ "loss": 0.5379,
261
+ "step": 720
262
+ },
263
+ {
264
+ "epoch": 4.15,
265
+ "grad_norm": 1.6961455345153809,
266
+ "learning_rate": 1.7239700374531837e-05,
267
+ "loss": 0.5492,
268
+ "step": 740
269
+ },
270
+ {
271
+ "epoch": 4.27,
272
+ "grad_norm": 1.4636189937591553,
273
+ "learning_rate": 1.7164794007490637e-05,
274
+ "loss": 0.547,
275
+ "step": 760
276
+ },
277
+ {
278
+ "epoch": 4.38,
279
+ "grad_norm": 2.1686649322509766,
280
+ "learning_rate": 1.708988764044944e-05,
281
+ "loss": 0.5424,
282
+ "step": 780
283
+ },
284
+ {
285
+ "epoch": 4.49,
286
+ "grad_norm": 1.219388723373413,
287
+ "learning_rate": 1.7014981273408243e-05,
288
+ "loss": 0.5373,
289
+ "step": 800
290
+ },
291
+ {
292
+ "epoch": 4.6,
293
+ "grad_norm": 1.5566452741622925,
294
+ "learning_rate": 1.6940074906367042e-05,
295
+ "loss": 0.4944,
296
+ "step": 820
297
+ },
298
+ {
299
+ "epoch": 4.71,
300
+ "grad_norm": 1.598917841911316,
301
+ "learning_rate": 1.6865168539325845e-05,
302
+ "loss": 0.5036,
303
+ "step": 840
304
+ },
305
+ {
306
+ "epoch": 4.83,
307
+ "grad_norm": 1.5281039476394653,
308
+ "learning_rate": 1.6790262172284645e-05,
309
+ "loss": 0.5215,
310
+ "step": 860
311
+ },
312
+ {
313
+ "epoch": 4.94,
314
+ "grad_norm": 1.7123130559921265,
315
+ "learning_rate": 1.6715355805243448e-05,
316
+ "loss": 0.5362,
317
+ "step": 880
318
+ },
319
+ {
320
+ "epoch": 5.05,
321
+ "grad_norm": 1.543447732925415,
322
+ "learning_rate": 1.6640449438202248e-05,
323
+ "loss": 0.5379,
324
+ "step": 900
325
+ },
326
+ {
327
+ "epoch": 5.16,
328
+ "grad_norm": 2.4190192222595215,
329
+ "learning_rate": 1.656554307116105e-05,
330
+ "loss": 0.4921,
331
+ "step": 920
332
+ },
333
+ {
334
+ "epoch": 5.28,
335
+ "grad_norm": 2.190906047821045,
336
+ "learning_rate": 1.649063670411985e-05,
337
+ "loss": 0.4652,
338
+ "step": 940
339
+ },
340
+ {
341
+ "epoch": 5.39,
342
+ "grad_norm": 2.113476514816284,
343
+ "learning_rate": 1.6415730337078653e-05,
344
+ "loss": 0.4914,
345
+ "step": 960
346
+ },
347
+ {
348
+ "epoch": 5.5,
349
+ "grad_norm": 1.8785656690597534,
350
+ "learning_rate": 1.6340823970037453e-05,
351
+ "loss": 0.5135,
352
+ "step": 980
353
+ },
354
+ {
355
+ "epoch": 5.61,
356
+ "grad_norm": 1.3745977878570557,
357
+ "learning_rate": 1.6265917602996256e-05,
358
+ "loss": 0.4697,
359
+ "step": 1000
360
+ },
361
+ {
362
+ "epoch": 5.72,
363
+ "grad_norm": 1.7874308824539185,
364
+ "learning_rate": 1.6191011235955056e-05,
365
+ "loss": 0.4625,
366
+ "step": 1020
367
+ },
368
+ {
369
+ "epoch": 5.84,
370
+ "grad_norm": 1.4448940753936768,
371
+ "learning_rate": 1.611610486891386e-05,
372
+ "loss": 0.4764,
373
+ "step": 1040
374
+ },
375
+ {
376
+ "epoch": 5.95,
377
+ "grad_norm": 2.278655767440796,
378
+ "learning_rate": 1.6041198501872662e-05,
379
+ "loss": 0.4221,
380
+ "step": 1060
381
+ },
382
+ {
383
+ "epoch": 6.06,
384
+ "grad_norm": 1.8602409362792969,
385
+ "learning_rate": 1.596629213483146e-05,
386
+ "loss": 0.4731,
387
+ "step": 1080
388
+ },
389
+ {
390
+ "epoch": 6.17,
391
+ "grad_norm": 1.884373426437378,
392
+ "learning_rate": 1.5891385767790265e-05,
393
+ "loss": 0.4241,
394
+ "step": 1100
395
+ },
396
+ {
397
+ "epoch": 6.29,
398
+ "grad_norm": 2.0259287357330322,
399
+ "learning_rate": 1.5816479400749064e-05,
400
+ "loss": 0.4368,
401
+ "step": 1120
402
+ },
403
+ {
404
+ "epoch": 6.4,
405
+ "grad_norm": 1.812462329864502,
406
+ "learning_rate": 1.5741573033707867e-05,
407
+ "loss": 0.442,
408
+ "step": 1140
409
+ },
410
+ {
411
+ "epoch": 6.51,
412
+ "grad_norm": 1.934327483177185,
413
+ "learning_rate": 1.5666666666666667e-05,
414
+ "loss": 0.4195,
415
+ "step": 1160
416
+ },
417
+ {
418
+ "epoch": 6.62,
419
+ "grad_norm": 1.6152955293655396,
420
+ "learning_rate": 1.559176029962547e-05,
421
+ "loss": 0.4374,
422
+ "step": 1180
423
+ },
424
+ {
425
+ "epoch": 6.73,
426
+ "grad_norm": 2.7782068252563477,
427
+ "learning_rate": 1.551685393258427e-05,
428
+ "loss": 0.4231,
429
+ "step": 1200
430
+ },
431
+ {
432
+ "epoch": 6.85,
433
+ "grad_norm": 2.372976303100586,
434
+ "learning_rate": 1.5441947565543073e-05,
435
+ "loss": 0.444,
436
+ "step": 1220
437
+ },
438
+ {
439
+ "epoch": 6.96,
440
+ "grad_norm": 2.171353816986084,
441
+ "learning_rate": 1.5367041198501872e-05,
442
+ "loss": 0.4389,
443
+ "step": 1240
444
+ },
445
+ {
446
+ "epoch": 7.07,
447
+ "grad_norm": 1.3093984127044678,
448
+ "learning_rate": 1.5292134831460675e-05,
449
+ "loss": 0.4301,
450
+ "step": 1260
451
+ },
452
+ {
453
+ "epoch": 7.18,
454
+ "grad_norm": 2.267932176589966,
455
+ "learning_rate": 1.5217228464419478e-05,
456
+ "loss": 0.4046,
457
+ "step": 1280
458
+ },
459
+ {
460
+ "epoch": 7.3,
461
+ "grad_norm": 1.5326164960861206,
462
+ "learning_rate": 1.514232209737828e-05,
463
+ "loss": 0.4068,
464
+ "step": 1300
465
+ },
466
+ {
467
+ "epoch": 7.41,
468
+ "grad_norm": 3.1525979042053223,
469
+ "learning_rate": 1.5067415730337081e-05,
470
+ "loss": 0.3847,
471
+ "step": 1320
472
+ },
473
+ {
474
+ "epoch": 7.52,
475
+ "grad_norm": 2.081890106201172,
476
+ "learning_rate": 1.4992509363295882e-05,
477
+ "loss": 0.4126,
478
+ "step": 1340
479
+ },
480
+ {
481
+ "epoch": 7.63,
482
+ "grad_norm": 2.5701358318328857,
483
+ "learning_rate": 1.4917602996254684e-05,
484
+ "loss": 0.4065,
485
+ "step": 1360
486
+ },
487
+ {
488
+ "epoch": 7.74,
489
+ "grad_norm": 1.4190051555633545,
490
+ "learning_rate": 1.4842696629213485e-05,
491
+ "loss": 0.3979,
492
+ "step": 1380
493
+ },
494
+ {
495
+ "epoch": 7.86,
496
+ "grad_norm": 1.9085837602615356,
497
+ "learning_rate": 1.4767790262172286e-05,
498
+ "loss": 0.3894,
499
+ "step": 1400
500
+ },
501
+ {
502
+ "epoch": 7.97,
503
+ "grad_norm": 1.7573003768920898,
504
+ "learning_rate": 1.4692883895131088e-05,
505
+ "loss": 0.3751,
506
+ "step": 1420
507
+ },
508
+ {
509
+ "epoch": 8.08,
510
+ "grad_norm": 1.8974506855010986,
511
+ "learning_rate": 1.4617977528089889e-05,
512
+ "loss": 0.3936,
513
+ "step": 1440
514
+ },
515
+ {
516
+ "epoch": 8.19,
517
+ "grad_norm": 1.3843660354614258,
518
+ "learning_rate": 1.454307116104869e-05,
519
+ "loss": 0.3848,
520
+ "step": 1460
521
+ },
522
+ {
523
+ "epoch": 8.31,
524
+ "grad_norm": 1.525007724761963,
525
+ "learning_rate": 1.4468164794007492e-05,
526
+ "loss": 0.3552,
527
+ "step": 1480
528
+ },
529
+ {
530
+ "epoch": 8.42,
531
+ "grad_norm": 2.1665101051330566,
532
+ "learning_rate": 1.4393258426966291e-05,
533
+ "loss": 0.3547,
534
+ "step": 1500
535
+ }
536
+ ],
537
+ "logging_steps": 20,
538
+ "max_steps": 5340,
539
+ "num_input_tokens_seen": 0,
540
+ "num_train_epochs": 30,
541
+ "save_steps": 500,
542
+ "total_flos": 3.8986916806656e+18,
543
+ "train_batch_size": 1,
544
+ "trial_name": null,
545
+ "trial_params": null
546
+ }
checkpoint-1500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f06c12b5819a4aa76501d6843eae3aabbe49b1a33a2903a44bc34146ab4a74b6
3
+ size 4920
checkpoint-2000/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: sallywww/Llama-7B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.9.1.dev0
checkpoint-2000/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "sallywww/Llama-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-2000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd613ed96e17d21d0945f5501544448e1b8642624f98437d52f35d1d4c8e5f8c
3
+ size 16794200
checkpoint-2000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:518aaaf2582cfdbc4732e00c710f2caee0326357ff4232a21da19f4c9440f012
3
+ size 33662074
checkpoint-2000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1db8ab10bef9f40ccd736ef23349a4646ad25eef39a69b9f918c14bcf25f36ff
3
+ size 14244
checkpoint-2000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df45828308b99d6f2a907ebbbe6b5adce87512a3daaba9a08e9c034f2286ed55
3
+ size 1064
checkpoint-2000/trainer_state.json ADDED
@@ -0,0 +1,721 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 11.224131883549632,
5
+ "eval_steps": 500,
6
+ "global_step": 2000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.11,
13
+ "grad_norm": 0.5909375548362732,
14
+ "learning_rate": 1.9932584269662923e-05,
15
+ "loss": 2.0237,
16
+ "step": 20
17
+ },
18
+ {
19
+ "epoch": 0.22,
20
+ "grad_norm": 0.5826025009155273,
21
+ "learning_rate": 1.9857677902621722e-05,
22
+ "loss": 1.9306,
23
+ "step": 40
24
+ },
25
+ {
26
+ "epoch": 0.34,
27
+ "grad_norm": 0.5491089820861816,
28
+ "learning_rate": 1.9782771535580525e-05,
29
+ "loss": 1.7959,
30
+ "step": 60
31
+ },
32
+ {
33
+ "epoch": 0.45,
34
+ "grad_norm": 1.362810730934143,
35
+ "learning_rate": 1.970786516853933e-05,
36
+ "loss": 1.6599,
37
+ "step": 80
38
+ },
39
+ {
40
+ "epoch": 0.56,
41
+ "grad_norm": 1.4427486658096313,
42
+ "learning_rate": 1.963295880149813e-05,
43
+ "loss": 1.5685,
44
+ "step": 100
45
+ },
46
+ {
47
+ "epoch": 0.67,
48
+ "grad_norm": 0.9993659257888794,
49
+ "learning_rate": 1.956179775280899e-05,
50
+ "loss": 1.4621,
51
+ "step": 120
52
+ },
53
+ {
54
+ "epoch": 0.79,
55
+ "grad_norm": 1.614562749862671,
56
+ "learning_rate": 1.9486891385767793e-05,
57
+ "loss": 1.31,
58
+ "step": 140
59
+ },
60
+ {
61
+ "epoch": 0.9,
62
+ "grad_norm": 1.1975798606872559,
63
+ "learning_rate": 1.9411985018726593e-05,
64
+ "loss": 1.2322,
65
+ "step": 160
66
+ },
67
+ {
68
+ "epoch": 1.01,
69
+ "grad_norm": 0.7684128880500793,
70
+ "learning_rate": 1.9337078651685396e-05,
71
+ "loss": 1.1361,
72
+ "step": 180
73
+ },
74
+ {
75
+ "epoch": 1.12,
76
+ "grad_norm": 0.9336960911750793,
77
+ "learning_rate": 1.9262172284644195e-05,
78
+ "loss": 1.0797,
79
+ "step": 200
80
+ },
81
+ {
82
+ "epoch": 1.23,
83
+ "grad_norm": 0.8471770882606506,
84
+ "learning_rate": 1.9187265917603e-05,
85
+ "loss": 1.0368,
86
+ "step": 220
87
+ },
88
+ {
89
+ "epoch": 1.35,
90
+ "grad_norm": 1.111340045928955,
91
+ "learning_rate": 1.9112359550561798e-05,
92
+ "loss": 0.9738,
93
+ "step": 240
94
+ },
95
+ {
96
+ "epoch": 1.46,
97
+ "grad_norm": 0.8093781471252441,
98
+ "learning_rate": 1.90374531835206e-05,
99
+ "loss": 0.9494,
100
+ "step": 260
101
+ },
102
+ {
103
+ "epoch": 1.57,
104
+ "grad_norm": 0.8438062071800232,
105
+ "learning_rate": 1.89625468164794e-05,
106
+ "loss": 0.9276,
107
+ "step": 280
108
+ },
109
+ {
110
+ "epoch": 1.68,
111
+ "grad_norm": 0.9896701574325562,
112
+ "learning_rate": 1.8887640449438204e-05,
113
+ "loss": 0.8656,
114
+ "step": 300
115
+ },
116
+ {
117
+ "epoch": 1.8,
118
+ "grad_norm": 0.8278244137763977,
119
+ "learning_rate": 1.8812734082397007e-05,
120
+ "loss": 0.8431,
121
+ "step": 320
122
+ },
123
+ {
124
+ "epoch": 1.91,
125
+ "grad_norm": 0.931291937828064,
126
+ "learning_rate": 1.8737827715355807e-05,
127
+ "loss": 0.7945,
128
+ "step": 340
129
+ },
130
+ {
131
+ "epoch": 2.02,
132
+ "grad_norm": 1.21769380569458,
133
+ "learning_rate": 1.866292134831461e-05,
134
+ "loss": 0.7647,
135
+ "step": 360
136
+ },
137
+ {
138
+ "epoch": 2.13,
139
+ "grad_norm": 3.5183286666870117,
140
+ "learning_rate": 1.858801498127341e-05,
141
+ "loss": 0.7497,
142
+ "step": 380
143
+ },
144
+ {
145
+ "epoch": 2.24,
146
+ "grad_norm": 1.1153030395507812,
147
+ "learning_rate": 1.8513108614232212e-05,
148
+ "loss": 0.7507,
149
+ "step": 400
150
+ },
151
+ {
152
+ "epoch": 2.36,
153
+ "grad_norm": 1.0140526294708252,
154
+ "learning_rate": 1.8438202247191012e-05,
155
+ "loss": 0.7415,
156
+ "step": 420
157
+ },
158
+ {
159
+ "epoch": 2.47,
160
+ "grad_norm": 1.4395232200622559,
161
+ "learning_rate": 1.8363295880149815e-05,
162
+ "loss": 0.6947,
163
+ "step": 440
164
+ },
165
+ {
166
+ "epoch": 2.58,
167
+ "grad_norm": 1.4253089427947998,
168
+ "learning_rate": 1.8288389513108615e-05,
169
+ "loss": 0.7429,
170
+ "step": 460
171
+ },
172
+ {
173
+ "epoch": 2.69,
174
+ "grad_norm": 1.3152351379394531,
175
+ "learning_rate": 1.8213483146067418e-05,
176
+ "loss": 0.7363,
177
+ "step": 480
178
+ },
179
+ {
180
+ "epoch": 2.81,
181
+ "grad_norm": 2.5935957431793213,
182
+ "learning_rate": 1.8138576779026217e-05,
183
+ "loss": 0.6486,
184
+ "step": 500
185
+ },
186
+ {
187
+ "epoch": 2.92,
188
+ "grad_norm": 3.929158926010132,
189
+ "learning_rate": 1.806367041198502e-05,
190
+ "loss": 0.6395,
191
+ "step": 520
192
+ },
193
+ {
194
+ "epoch": 3.03,
195
+ "grad_norm": 1.7316572666168213,
196
+ "learning_rate": 1.7988764044943823e-05,
197
+ "loss": 0.664,
198
+ "step": 540
199
+ },
200
+ {
201
+ "epoch": 3.14,
202
+ "grad_norm": 1.3388841152191162,
203
+ "learning_rate": 1.7913857677902623e-05,
204
+ "loss": 0.6469,
205
+ "step": 560
206
+ },
207
+ {
208
+ "epoch": 3.25,
209
+ "grad_norm": 1.5258549451828003,
210
+ "learning_rate": 1.7838951310861426e-05,
211
+ "loss": 0.6662,
212
+ "step": 580
213
+ },
214
+ {
215
+ "epoch": 3.37,
216
+ "grad_norm": 1.5486094951629639,
217
+ "learning_rate": 1.7764044943820226e-05,
218
+ "loss": 0.566,
219
+ "step": 600
220
+ },
221
+ {
222
+ "epoch": 3.48,
223
+ "grad_norm": 1.5657902956008911,
224
+ "learning_rate": 1.768913857677903e-05,
225
+ "loss": 0.6166,
226
+ "step": 620
227
+ },
228
+ {
229
+ "epoch": 3.59,
230
+ "grad_norm": 1.5971391201019287,
231
+ "learning_rate": 1.761423220973783e-05,
232
+ "loss": 0.5973,
233
+ "step": 640
234
+ },
235
+ {
236
+ "epoch": 3.7,
237
+ "grad_norm": 1.333030343055725,
238
+ "learning_rate": 1.753932584269663e-05,
239
+ "loss": 0.6117,
240
+ "step": 660
241
+ },
242
+ {
243
+ "epoch": 3.82,
244
+ "grad_norm": 1.4425445795059204,
245
+ "learning_rate": 1.746441947565543e-05,
246
+ "loss": 0.5702,
247
+ "step": 680
248
+ },
249
+ {
250
+ "epoch": 3.93,
251
+ "grad_norm": 1.4773032665252686,
252
+ "learning_rate": 1.7389513108614234e-05,
253
+ "loss": 0.5465,
254
+ "step": 700
255
+ },
256
+ {
257
+ "epoch": 4.04,
258
+ "grad_norm": 1.3328267335891724,
259
+ "learning_rate": 1.7314606741573034e-05,
260
+ "loss": 0.5379,
261
+ "step": 720
262
+ },
263
+ {
264
+ "epoch": 4.15,
265
+ "grad_norm": 1.6961455345153809,
266
+ "learning_rate": 1.7239700374531837e-05,
267
+ "loss": 0.5492,
268
+ "step": 740
269
+ },
270
+ {
271
+ "epoch": 4.27,
272
+ "grad_norm": 1.4636189937591553,
273
+ "learning_rate": 1.7164794007490637e-05,
274
+ "loss": 0.547,
275
+ "step": 760
276
+ },
277
+ {
278
+ "epoch": 4.38,
279
+ "grad_norm": 2.1686649322509766,
280
+ "learning_rate": 1.708988764044944e-05,
281
+ "loss": 0.5424,
282
+ "step": 780
283
+ },
284
+ {
285
+ "epoch": 4.49,
286
+ "grad_norm": 1.219388723373413,
287
+ "learning_rate": 1.7014981273408243e-05,
288
+ "loss": 0.5373,
289
+ "step": 800
290
+ },
291
+ {
292
+ "epoch": 4.6,
293
+ "grad_norm": 1.5566452741622925,
294
+ "learning_rate": 1.6940074906367042e-05,
295
+ "loss": 0.4944,
296
+ "step": 820
297
+ },
298
+ {
299
+ "epoch": 4.71,
300
+ "grad_norm": 1.598917841911316,
301
+ "learning_rate": 1.6865168539325845e-05,
302
+ "loss": 0.5036,
303
+ "step": 840
304
+ },
305
+ {
306
+ "epoch": 4.83,
307
+ "grad_norm": 1.5281039476394653,
308
+ "learning_rate": 1.6790262172284645e-05,
309
+ "loss": 0.5215,
310
+ "step": 860
311
+ },
312
+ {
313
+ "epoch": 4.94,
314
+ "grad_norm": 1.7123130559921265,
315
+ "learning_rate": 1.6715355805243448e-05,
316
+ "loss": 0.5362,
317
+ "step": 880
318
+ },
319
+ {
320
+ "epoch": 5.05,
321
+ "grad_norm": 1.543447732925415,
322
+ "learning_rate": 1.6640449438202248e-05,
323
+ "loss": 0.5379,
324
+ "step": 900
325
+ },
326
+ {
327
+ "epoch": 5.16,
328
+ "grad_norm": 2.4190192222595215,
329
+ "learning_rate": 1.656554307116105e-05,
330
+ "loss": 0.4921,
331
+ "step": 920
332
+ },
333
+ {
334
+ "epoch": 5.28,
335
+ "grad_norm": 2.190906047821045,
336
+ "learning_rate": 1.649063670411985e-05,
337
+ "loss": 0.4652,
338
+ "step": 940
339
+ },
340
+ {
341
+ "epoch": 5.39,
342
+ "grad_norm": 2.113476514816284,
343
+ "learning_rate": 1.6415730337078653e-05,
344
+ "loss": 0.4914,
345
+ "step": 960
346
+ },
347
+ {
348
+ "epoch": 5.5,
349
+ "grad_norm": 1.8785656690597534,
350
+ "learning_rate": 1.6340823970037453e-05,
351
+ "loss": 0.5135,
352
+ "step": 980
353
+ },
354
+ {
355
+ "epoch": 5.61,
356
+ "grad_norm": 1.3745977878570557,
357
+ "learning_rate": 1.6265917602996256e-05,
358
+ "loss": 0.4697,
359
+ "step": 1000
360
+ },
361
+ {
362
+ "epoch": 5.72,
363
+ "grad_norm": 1.7874308824539185,
364
+ "learning_rate": 1.6191011235955056e-05,
365
+ "loss": 0.4625,
366
+ "step": 1020
367
+ },
368
+ {
369
+ "epoch": 5.84,
370
+ "grad_norm": 1.4448940753936768,
371
+ "learning_rate": 1.611610486891386e-05,
372
+ "loss": 0.4764,
373
+ "step": 1040
374
+ },
375
+ {
376
+ "epoch": 5.95,
377
+ "grad_norm": 2.278655767440796,
378
+ "learning_rate": 1.6041198501872662e-05,
379
+ "loss": 0.4221,
380
+ "step": 1060
381
+ },
382
+ {
383
+ "epoch": 6.06,
384
+ "grad_norm": 1.8602409362792969,
385
+ "learning_rate": 1.596629213483146e-05,
386
+ "loss": 0.4731,
387
+ "step": 1080
388
+ },
389
+ {
390
+ "epoch": 6.17,
391
+ "grad_norm": 1.884373426437378,
392
+ "learning_rate": 1.5891385767790265e-05,
393
+ "loss": 0.4241,
394
+ "step": 1100
395
+ },
396
+ {
397
+ "epoch": 6.29,
398
+ "grad_norm": 2.0259287357330322,
399
+ "learning_rate": 1.5816479400749064e-05,
400
+ "loss": 0.4368,
401
+ "step": 1120
402
+ },
403
+ {
404
+ "epoch": 6.4,
405
+ "grad_norm": 1.812462329864502,
406
+ "learning_rate": 1.5741573033707867e-05,
407
+ "loss": 0.442,
408
+ "step": 1140
409
+ },
410
+ {
411
+ "epoch": 6.51,
412
+ "grad_norm": 1.934327483177185,
413
+ "learning_rate": 1.5666666666666667e-05,
414
+ "loss": 0.4195,
415
+ "step": 1160
416
+ },
417
+ {
418
+ "epoch": 6.62,
419
+ "grad_norm": 1.6152955293655396,
420
+ "learning_rate": 1.559176029962547e-05,
421
+ "loss": 0.4374,
422
+ "step": 1180
423
+ },
424
+ {
425
+ "epoch": 6.73,
426
+ "grad_norm": 2.7782068252563477,
427
+ "learning_rate": 1.551685393258427e-05,
428
+ "loss": 0.4231,
429
+ "step": 1200
430
+ },
431
+ {
432
+ "epoch": 6.85,
433
+ "grad_norm": 2.372976303100586,
434
+ "learning_rate": 1.5441947565543073e-05,
435
+ "loss": 0.444,
436
+ "step": 1220
437
+ },
438
+ {
439
+ "epoch": 6.96,
440
+ "grad_norm": 2.171353816986084,
441
+ "learning_rate": 1.5367041198501872e-05,
442
+ "loss": 0.4389,
443
+ "step": 1240
444
+ },
445
+ {
446
+ "epoch": 7.07,
447
+ "grad_norm": 1.3093984127044678,
448
+ "learning_rate": 1.5292134831460675e-05,
449
+ "loss": 0.4301,
450
+ "step": 1260
451
+ },
452
+ {
453
+ "epoch": 7.18,
454
+ "grad_norm": 2.267932176589966,
455
+ "learning_rate": 1.5217228464419478e-05,
456
+ "loss": 0.4046,
457
+ "step": 1280
458
+ },
459
+ {
460
+ "epoch": 7.3,
461
+ "grad_norm": 1.5326164960861206,
462
+ "learning_rate": 1.514232209737828e-05,
463
+ "loss": 0.4068,
464
+ "step": 1300
465
+ },
466
+ {
467
+ "epoch": 7.41,
468
+ "grad_norm": 3.1525979042053223,
469
+ "learning_rate": 1.5067415730337081e-05,
470
+ "loss": 0.3847,
471
+ "step": 1320
472
+ },
473
+ {
474
+ "epoch": 7.52,
475
+ "grad_norm": 2.081890106201172,
476
+ "learning_rate": 1.4992509363295882e-05,
477
+ "loss": 0.4126,
478
+ "step": 1340
479
+ },
480
+ {
481
+ "epoch": 7.63,
482
+ "grad_norm": 2.5701358318328857,
483
+ "learning_rate": 1.4917602996254684e-05,
484
+ "loss": 0.4065,
485
+ "step": 1360
486
+ },
487
+ {
488
+ "epoch": 7.74,
489
+ "grad_norm": 1.4190051555633545,
490
+ "learning_rate": 1.4842696629213485e-05,
491
+ "loss": 0.3979,
492
+ "step": 1380
493
+ },
494
+ {
495
+ "epoch": 7.86,
496
+ "grad_norm": 1.9085837602615356,
497
+ "learning_rate": 1.4767790262172286e-05,
498
+ "loss": 0.3894,
499
+ "step": 1400
500
+ },
501
+ {
502
+ "epoch": 7.97,
503
+ "grad_norm": 1.7573003768920898,
504
+ "learning_rate": 1.4692883895131088e-05,
505
+ "loss": 0.3751,
506
+ "step": 1420
507
+ },
508
+ {
509
+ "epoch": 8.08,
510
+ "grad_norm": 1.8974506855010986,
511
+ "learning_rate": 1.4617977528089889e-05,
512
+ "loss": 0.3936,
513
+ "step": 1440
514
+ },
515
+ {
516
+ "epoch": 8.19,
517
+ "grad_norm": 1.3843660354614258,
518
+ "learning_rate": 1.454307116104869e-05,
519
+ "loss": 0.3848,
520
+ "step": 1460
521
+ },
522
+ {
523
+ "epoch": 8.31,
524
+ "grad_norm": 1.525007724761963,
525
+ "learning_rate": 1.4468164794007492e-05,
526
+ "loss": 0.3552,
527
+ "step": 1480
528
+ },
529
+ {
530
+ "epoch": 8.42,
531
+ "grad_norm": 2.1665101051330566,
532
+ "learning_rate": 1.4393258426966291e-05,
533
+ "loss": 0.3547,
534
+ "step": 1500
535
+ },
536
+ {
537
+ "epoch": 8.53,
538
+ "grad_norm": 3.3614535331726074,
539
+ "learning_rate": 1.4318352059925096e-05,
540
+ "loss": 0.3771,
541
+ "step": 1520
542
+ },
543
+ {
544
+ "epoch": 8.64,
545
+ "grad_norm": 1.746299386024475,
546
+ "learning_rate": 1.4243445692883898e-05,
547
+ "loss": 0.396,
548
+ "step": 1540
549
+ },
550
+ {
551
+ "epoch": 8.75,
552
+ "grad_norm": 1.9144684076309204,
553
+ "learning_rate": 1.4168539325842699e-05,
554
+ "loss": 0.3748,
555
+ "step": 1560
556
+ },
557
+ {
558
+ "epoch": 8.87,
559
+ "grad_norm": 1.9617277383804321,
560
+ "learning_rate": 1.40936329588015e-05,
561
+ "loss": 0.3504,
562
+ "step": 1580
563
+ },
564
+ {
565
+ "epoch": 8.98,
566
+ "grad_norm": 2.69067645072937,
567
+ "learning_rate": 1.4018726591760302e-05,
568
+ "loss": 0.3477,
569
+ "step": 1600
570
+ },
571
+ {
572
+ "epoch": 9.09,
573
+ "grad_norm": 2.142008066177368,
574
+ "learning_rate": 1.3943820224719103e-05,
575
+ "loss": 0.3539,
576
+ "step": 1620
577
+ },
578
+ {
579
+ "epoch": 9.2,
580
+ "grad_norm": 1.7684266567230225,
581
+ "learning_rate": 1.3868913857677904e-05,
582
+ "loss": 0.3576,
583
+ "step": 1640
584
+ },
585
+ {
586
+ "epoch": 9.32,
587
+ "grad_norm": 1.4222275018692017,
588
+ "learning_rate": 1.3794007490636706e-05,
589
+ "loss": 0.3839,
590
+ "step": 1660
591
+ },
592
+ {
593
+ "epoch": 9.43,
594
+ "grad_norm": 2.0622501373291016,
595
+ "learning_rate": 1.3719101123595507e-05,
596
+ "loss": 0.3278,
597
+ "step": 1680
598
+ },
599
+ {
600
+ "epoch": 9.54,
601
+ "grad_norm": 1.639147400856018,
602
+ "learning_rate": 1.3644194756554308e-05,
603
+ "loss": 0.3374,
604
+ "step": 1700
605
+ },
606
+ {
607
+ "epoch": 9.65,
608
+ "grad_norm": 2.093045473098755,
609
+ "learning_rate": 1.356928838951311e-05,
610
+ "loss": 0.3535,
611
+ "step": 1720
612
+ },
613
+ {
614
+ "epoch": 9.76,
615
+ "grad_norm": 1.3492937088012695,
616
+ "learning_rate": 1.3494382022471911e-05,
617
+ "loss": 0.3105,
618
+ "step": 1740
619
+ },
620
+ {
621
+ "epoch": 9.88,
622
+ "grad_norm": 1.585205316543579,
623
+ "learning_rate": 1.3419475655430714e-05,
624
+ "loss": 0.3181,
625
+ "step": 1760
626
+ },
627
+ {
628
+ "epoch": 9.99,
629
+ "grad_norm": 2.8895344734191895,
630
+ "learning_rate": 1.3344569288389515e-05,
631
+ "loss": 0.3473,
632
+ "step": 1780
633
+ },
634
+ {
635
+ "epoch": 10.1,
636
+ "grad_norm": 1.7224748134613037,
637
+ "learning_rate": 1.3269662921348317e-05,
638
+ "loss": 0.3524,
639
+ "step": 1800
640
+ },
641
+ {
642
+ "epoch": 10.21,
643
+ "grad_norm": 2.1029868125915527,
644
+ "learning_rate": 1.3194756554307118e-05,
645
+ "loss": 0.3408,
646
+ "step": 1820
647
+ },
648
+ {
649
+ "epoch": 10.33,
650
+ "grad_norm": 2.434016227722168,
651
+ "learning_rate": 1.311985018726592e-05,
652
+ "loss": 0.3266,
653
+ "step": 1840
654
+ },
655
+ {
656
+ "epoch": 10.44,
657
+ "grad_norm": 1.953553318977356,
658
+ "learning_rate": 1.304494382022472e-05,
659
+ "loss": 0.2844,
660
+ "step": 1860
661
+ },
662
+ {
663
+ "epoch": 10.55,
664
+ "grad_norm": 2.5946218967437744,
665
+ "learning_rate": 1.2970037453183522e-05,
666
+ "loss": 0.3225,
667
+ "step": 1880
668
+ },
669
+ {
670
+ "epoch": 10.66,
671
+ "grad_norm": 2.5305733680725098,
672
+ "learning_rate": 1.2895131086142323e-05,
673
+ "loss": 0.3183,
674
+ "step": 1900
675
+ },
676
+ {
677
+ "epoch": 10.78,
678
+ "grad_norm": 3.56726336479187,
679
+ "learning_rate": 1.2820224719101125e-05,
680
+ "loss": 0.2944,
681
+ "step": 1920
682
+ },
683
+ {
684
+ "epoch": 10.89,
685
+ "grad_norm": 1.9687740802764893,
686
+ "learning_rate": 1.2745318352059926e-05,
687
+ "loss": 0.3411,
688
+ "step": 1940
689
+ },
690
+ {
691
+ "epoch": 11.0,
692
+ "grad_norm": 1.6027730703353882,
693
+ "learning_rate": 1.2670411985018727e-05,
694
+ "loss": 0.2949,
695
+ "step": 1960
696
+ },
697
+ {
698
+ "epoch": 11.11,
699
+ "grad_norm": 1.8739397525787354,
700
+ "learning_rate": 1.2595505617977529e-05,
701
+ "loss": 0.2716,
702
+ "step": 1980
703
+ },
704
+ {
705
+ "epoch": 11.22,
706
+ "grad_norm": 1.6741198301315308,
707
+ "learning_rate": 1.2520599250936332e-05,
708
+ "loss": 0.3334,
709
+ "step": 2000
710
+ }
711
+ ],
712
+ "logging_steps": 20,
713
+ "max_steps": 5340,
714
+ "num_input_tokens_seen": 0,
715
+ "num_train_epochs": 30,
716
+ "save_steps": 500,
717
+ "total_flos": 5.1982555742208e+18,
718
+ "train_batch_size": 1,
719
+ "trial_name": null,
720
+ "trial_params": null
721
+ }
checkpoint-2000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f06c12b5819a4aa76501d6843eae3aabbe49b1a33a2903a44bc34146ab4a74b6
3
+ size 4920
checkpoint-2500/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: sallywww/Llama-7B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.9.1.dev0
checkpoint-2500/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "sallywww/Llama-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-2500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9005fc8855ef82e0939ba2c5e9d394a3798e9e2a90631842d83fd2f682115df5
3
+ size 16794200
checkpoint-2500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4995116a25cb7af3c66a7498845928a2a695730f9181770f442a671859729a4
3
+ size 33662074
checkpoint-2500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50829e25f3322bf5790ba82dc96c90b4d645abb278258bff05672cd8b4dbdbad
3
+ size 14244
checkpoint-2500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:637026167e8df72379bd688d232a13472d5bffb23ec7620f9c608d613fc966b9
3
+ size 1064
checkpoint-2500/trainer_state.json ADDED
@@ -0,0 +1,896 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 14.03016485443704,
5
+ "eval_steps": 500,
6
+ "global_step": 2500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.11,
13
+ "grad_norm": 0.5909375548362732,
14
+ "learning_rate": 1.9932584269662923e-05,
15
+ "loss": 2.0237,
16
+ "step": 20
17
+ },
18
+ {
19
+ "epoch": 0.22,
20
+ "grad_norm": 0.5826025009155273,
21
+ "learning_rate": 1.9857677902621722e-05,
22
+ "loss": 1.9306,
23
+ "step": 40
24
+ },
25
+ {
26
+ "epoch": 0.34,
27
+ "grad_norm": 0.5491089820861816,
28
+ "learning_rate": 1.9782771535580525e-05,
29
+ "loss": 1.7959,
30
+ "step": 60
31
+ },
32
+ {
33
+ "epoch": 0.45,
34
+ "grad_norm": 1.362810730934143,
35
+ "learning_rate": 1.970786516853933e-05,
36
+ "loss": 1.6599,
37
+ "step": 80
38
+ },
39
+ {
40
+ "epoch": 0.56,
41
+ "grad_norm": 1.4427486658096313,
42
+ "learning_rate": 1.963295880149813e-05,
43
+ "loss": 1.5685,
44
+ "step": 100
45
+ },
46
+ {
47
+ "epoch": 0.67,
48
+ "grad_norm": 0.9993659257888794,
49
+ "learning_rate": 1.956179775280899e-05,
50
+ "loss": 1.4621,
51
+ "step": 120
52
+ },
53
+ {
54
+ "epoch": 0.79,
55
+ "grad_norm": 1.614562749862671,
56
+ "learning_rate": 1.9486891385767793e-05,
57
+ "loss": 1.31,
58
+ "step": 140
59
+ },
60
+ {
61
+ "epoch": 0.9,
62
+ "grad_norm": 1.1975798606872559,
63
+ "learning_rate": 1.9411985018726593e-05,
64
+ "loss": 1.2322,
65
+ "step": 160
66
+ },
67
+ {
68
+ "epoch": 1.01,
69
+ "grad_norm": 0.7684128880500793,
70
+ "learning_rate": 1.9337078651685396e-05,
71
+ "loss": 1.1361,
72
+ "step": 180
73
+ },
74
+ {
75
+ "epoch": 1.12,
76
+ "grad_norm": 0.9336960911750793,
77
+ "learning_rate": 1.9262172284644195e-05,
78
+ "loss": 1.0797,
79
+ "step": 200
80
+ },
81
+ {
82
+ "epoch": 1.23,
83
+ "grad_norm": 0.8471770882606506,
84
+ "learning_rate": 1.9187265917603e-05,
85
+ "loss": 1.0368,
86
+ "step": 220
87
+ },
88
+ {
89
+ "epoch": 1.35,
90
+ "grad_norm": 1.111340045928955,
91
+ "learning_rate": 1.9112359550561798e-05,
92
+ "loss": 0.9738,
93
+ "step": 240
94
+ },
95
+ {
96
+ "epoch": 1.46,
97
+ "grad_norm": 0.8093781471252441,
98
+ "learning_rate": 1.90374531835206e-05,
99
+ "loss": 0.9494,
100
+ "step": 260
101
+ },
102
+ {
103
+ "epoch": 1.57,
104
+ "grad_norm": 0.8438062071800232,
105
+ "learning_rate": 1.89625468164794e-05,
106
+ "loss": 0.9276,
107
+ "step": 280
108
+ },
109
+ {
110
+ "epoch": 1.68,
111
+ "grad_norm": 0.9896701574325562,
112
+ "learning_rate": 1.8887640449438204e-05,
113
+ "loss": 0.8656,
114
+ "step": 300
115
+ },
116
+ {
117
+ "epoch": 1.8,
118
+ "grad_norm": 0.8278244137763977,
119
+ "learning_rate": 1.8812734082397007e-05,
120
+ "loss": 0.8431,
121
+ "step": 320
122
+ },
123
+ {
124
+ "epoch": 1.91,
125
+ "grad_norm": 0.931291937828064,
126
+ "learning_rate": 1.8737827715355807e-05,
127
+ "loss": 0.7945,
128
+ "step": 340
129
+ },
130
+ {
131
+ "epoch": 2.02,
132
+ "grad_norm": 1.21769380569458,
133
+ "learning_rate": 1.866292134831461e-05,
134
+ "loss": 0.7647,
135
+ "step": 360
136
+ },
137
+ {
138
+ "epoch": 2.13,
139
+ "grad_norm": 3.5183286666870117,
140
+ "learning_rate": 1.858801498127341e-05,
141
+ "loss": 0.7497,
142
+ "step": 380
143
+ },
144
+ {
145
+ "epoch": 2.24,
146
+ "grad_norm": 1.1153030395507812,
147
+ "learning_rate": 1.8513108614232212e-05,
148
+ "loss": 0.7507,
149
+ "step": 400
150
+ },
151
+ {
152
+ "epoch": 2.36,
153
+ "grad_norm": 1.0140526294708252,
154
+ "learning_rate": 1.8438202247191012e-05,
155
+ "loss": 0.7415,
156
+ "step": 420
157
+ },
158
+ {
159
+ "epoch": 2.47,
160
+ "grad_norm": 1.4395232200622559,
161
+ "learning_rate": 1.8363295880149815e-05,
162
+ "loss": 0.6947,
163
+ "step": 440
164
+ },
165
+ {
166
+ "epoch": 2.58,
167
+ "grad_norm": 1.4253089427947998,
168
+ "learning_rate": 1.8288389513108615e-05,
169
+ "loss": 0.7429,
170
+ "step": 460
171
+ },
172
+ {
173
+ "epoch": 2.69,
174
+ "grad_norm": 1.3152351379394531,
175
+ "learning_rate": 1.8213483146067418e-05,
176
+ "loss": 0.7363,
177
+ "step": 480
178
+ },
179
+ {
180
+ "epoch": 2.81,
181
+ "grad_norm": 2.5935957431793213,
182
+ "learning_rate": 1.8138576779026217e-05,
183
+ "loss": 0.6486,
184
+ "step": 500
185
+ },
186
+ {
187
+ "epoch": 2.92,
188
+ "grad_norm": 3.929158926010132,
189
+ "learning_rate": 1.806367041198502e-05,
190
+ "loss": 0.6395,
191
+ "step": 520
192
+ },
193
+ {
194
+ "epoch": 3.03,
195
+ "grad_norm": 1.7316572666168213,
196
+ "learning_rate": 1.7988764044943823e-05,
197
+ "loss": 0.664,
198
+ "step": 540
199
+ },
200
+ {
201
+ "epoch": 3.14,
202
+ "grad_norm": 1.3388841152191162,
203
+ "learning_rate": 1.7913857677902623e-05,
204
+ "loss": 0.6469,
205
+ "step": 560
206
+ },
207
+ {
208
+ "epoch": 3.25,
209
+ "grad_norm": 1.5258549451828003,
210
+ "learning_rate": 1.7838951310861426e-05,
211
+ "loss": 0.6662,
212
+ "step": 580
213
+ },
214
+ {
215
+ "epoch": 3.37,
216
+ "grad_norm": 1.5486094951629639,
217
+ "learning_rate": 1.7764044943820226e-05,
218
+ "loss": 0.566,
219
+ "step": 600
220
+ },
221
+ {
222
+ "epoch": 3.48,
223
+ "grad_norm": 1.5657902956008911,
224
+ "learning_rate": 1.768913857677903e-05,
225
+ "loss": 0.6166,
226
+ "step": 620
227
+ },
228
+ {
229
+ "epoch": 3.59,
230
+ "grad_norm": 1.5971391201019287,
231
+ "learning_rate": 1.761423220973783e-05,
232
+ "loss": 0.5973,
233
+ "step": 640
234
+ },
235
+ {
236
+ "epoch": 3.7,
237
+ "grad_norm": 1.333030343055725,
238
+ "learning_rate": 1.753932584269663e-05,
239
+ "loss": 0.6117,
240
+ "step": 660
241
+ },
242
+ {
243
+ "epoch": 3.82,
244
+ "grad_norm": 1.4425445795059204,
245
+ "learning_rate": 1.746441947565543e-05,
246
+ "loss": 0.5702,
247
+ "step": 680
248
+ },
249
+ {
250
+ "epoch": 3.93,
251
+ "grad_norm": 1.4773032665252686,
252
+ "learning_rate": 1.7389513108614234e-05,
253
+ "loss": 0.5465,
254
+ "step": 700
255
+ },
256
+ {
257
+ "epoch": 4.04,
258
+ "grad_norm": 1.3328267335891724,
259
+ "learning_rate": 1.7314606741573034e-05,
260
+ "loss": 0.5379,
261
+ "step": 720
262
+ },
263
+ {
264
+ "epoch": 4.15,
265
+ "grad_norm": 1.6961455345153809,
266
+ "learning_rate": 1.7239700374531837e-05,
267
+ "loss": 0.5492,
268
+ "step": 740
269
+ },
270
+ {
271
+ "epoch": 4.27,
272
+ "grad_norm": 1.4636189937591553,
273
+ "learning_rate": 1.7164794007490637e-05,
274
+ "loss": 0.547,
275
+ "step": 760
276
+ },
277
+ {
278
+ "epoch": 4.38,
279
+ "grad_norm": 2.1686649322509766,
280
+ "learning_rate": 1.708988764044944e-05,
281
+ "loss": 0.5424,
282
+ "step": 780
283
+ },
284
+ {
285
+ "epoch": 4.49,
286
+ "grad_norm": 1.219388723373413,
287
+ "learning_rate": 1.7014981273408243e-05,
288
+ "loss": 0.5373,
289
+ "step": 800
290
+ },
291
+ {
292
+ "epoch": 4.6,
293
+ "grad_norm": 1.5566452741622925,
294
+ "learning_rate": 1.6940074906367042e-05,
295
+ "loss": 0.4944,
296
+ "step": 820
297
+ },
298
+ {
299
+ "epoch": 4.71,
300
+ "grad_norm": 1.598917841911316,
301
+ "learning_rate": 1.6865168539325845e-05,
302
+ "loss": 0.5036,
303
+ "step": 840
304
+ },
305
+ {
306
+ "epoch": 4.83,
307
+ "grad_norm": 1.5281039476394653,
308
+ "learning_rate": 1.6790262172284645e-05,
309
+ "loss": 0.5215,
310
+ "step": 860
311
+ },
312
+ {
313
+ "epoch": 4.94,
314
+ "grad_norm": 1.7123130559921265,
315
+ "learning_rate": 1.6715355805243448e-05,
316
+ "loss": 0.5362,
317
+ "step": 880
318
+ },
319
+ {
320
+ "epoch": 5.05,
321
+ "grad_norm": 1.543447732925415,
322
+ "learning_rate": 1.6640449438202248e-05,
323
+ "loss": 0.5379,
324
+ "step": 900
325
+ },
326
+ {
327
+ "epoch": 5.16,
328
+ "grad_norm": 2.4190192222595215,
329
+ "learning_rate": 1.656554307116105e-05,
330
+ "loss": 0.4921,
331
+ "step": 920
332
+ },
333
+ {
334
+ "epoch": 5.28,
335
+ "grad_norm": 2.190906047821045,
336
+ "learning_rate": 1.649063670411985e-05,
337
+ "loss": 0.4652,
338
+ "step": 940
339
+ },
340
+ {
341
+ "epoch": 5.39,
342
+ "grad_norm": 2.113476514816284,
343
+ "learning_rate": 1.6415730337078653e-05,
344
+ "loss": 0.4914,
345
+ "step": 960
346
+ },
347
+ {
348
+ "epoch": 5.5,
349
+ "grad_norm": 1.8785656690597534,
350
+ "learning_rate": 1.6340823970037453e-05,
351
+ "loss": 0.5135,
352
+ "step": 980
353
+ },
354
+ {
355
+ "epoch": 5.61,
356
+ "grad_norm": 1.3745977878570557,
357
+ "learning_rate": 1.6265917602996256e-05,
358
+ "loss": 0.4697,
359
+ "step": 1000
360
+ },
361
+ {
362
+ "epoch": 5.72,
363
+ "grad_norm": 1.7874308824539185,
364
+ "learning_rate": 1.6191011235955056e-05,
365
+ "loss": 0.4625,
366
+ "step": 1020
367
+ },
368
+ {
369
+ "epoch": 5.84,
370
+ "grad_norm": 1.4448940753936768,
371
+ "learning_rate": 1.611610486891386e-05,
372
+ "loss": 0.4764,
373
+ "step": 1040
374
+ },
375
+ {
376
+ "epoch": 5.95,
377
+ "grad_norm": 2.278655767440796,
378
+ "learning_rate": 1.6041198501872662e-05,
379
+ "loss": 0.4221,
380
+ "step": 1060
381
+ },
382
+ {
383
+ "epoch": 6.06,
384
+ "grad_norm": 1.8602409362792969,
385
+ "learning_rate": 1.596629213483146e-05,
386
+ "loss": 0.4731,
387
+ "step": 1080
388
+ },
389
+ {
390
+ "epoch": 6.17,
391
+ "grad_norm": 1.884373426437378,
392
+ "learning_rate": 1.5891385767790265e-05,
393
+ "loss": 0.4241,
394
+ "step": 1100
395
+ },
396
+ {
397
+ "epoch": 6.29,
398
+ "grad_norm": 2.0259287357330322,
399
+ "learning_rate": 1.5816479400749064e-05,
400
+ "loss": 0.4368,
401
+ "step": 1120
402
+ },
403
+ {
404
+ "epoch": 6.4,
405
+ "grad_norm": 1.812462329864502,
406
+ "learning_rate": 1.5741573033707867e-05,
407
+ "loss": 0.442,
408
+ "step": 1140
409
+ },
410
+ {
411
+ "epoch": 6.51,
412
+ "grad_norm": 1.934327483177185,
413
+ "learning_rate": 1.5666666666666667e-05,
414
+ "loss": 0.4195,
415
+ "step": 1160
416
+ },
417
+ {
418
+ "epoch": 6.62,
419
+ "grad_norm": 1.6152955293655396,
420
+ "learning_rate": 1.559176029962547e-05,
421
+ "loss": 0.4374,
422
+ "step": 1180
423
+ },
424
+ {
425
+ "epoch": 6.73,
426
+ "grad_norm": 2.7782068252563477,
427
+ "learning_rate": 1.551685393258427e-05,
428
+ "loss": 0.4231,
429
+ "step": 1200
430
+ },
431
+ {
432
+ "epoch": 6.85,
433
+ "grad_norm": 2.372976303100586,
434
+ "learning_rate": 1.5441947565543073e-05,
435
+ "loss": 0.444,
436
+ "step": 1220
437
+ },
438
+ {
439
+ "epoch": 6.96,
440
+ "grad_norm": 2.171353816986084,
441
+ "learning_rate": 1.5367041198501872e-05,
442
+ "loss": 0.4389,
443
+ "step": 1240
444
+ },
445
+ {
446
+ "epoch": 7.07,
447
+ "grad_norm": 1.3093984127044678,
448
+ "learning_rate": 1.5292134831460675e-05,
449
+ "loss": 0.4301,
450
+ "step": 1260
451
+ },
452
+ {
453
+ "epoch": 7.18,
454
+ "grad_norm": 2.267932176589966,
455
+ "learning_rate": 1.5217228464419478e-05,
456
+ "loss": 0.4046,
457
+ "step": 1280
458
+ },
459
+ {
460
+ "epoch": 7.3,
461
+ "grad_norm": 1.5326164960861206,
462
+ "learning_rate": 1.514232209737828e-05,
463
+ "loss": 0.4068,
464
+ "step": 1300
465
+ },
466
+ {
467
+ "epoch": 7.41,
468
+ "grad_norm": 3.1525979042053223,
469
+ "learning_rate": 1.5067415730337081e-05,
470
+ "loss": 0.3847,
471
+ "step": 1320
472
+ },
473
+ {
474
+ "epoch": 7.52,
475
+ "grad_norm": 2.081890106201172,
476
+ "learning_rate": 1.4992509363295882e-05,
477
+ "loss": 0.4126,
478
+ "step": 1340
479
+ },
480
+ {
481
+ "epoch": 7.63,
482
+ "grad_norm": 2.5701358318328857,
483
+ "learning_rate": 1.4917602996254684e-05,
484
+ "loss": 0.4065,
485
+ "step": 1360
486
+ },
487
+ {
488
+ "epoch": 7.74,
489
+ "grad_norm": 1.4190051555633545,
490
+ "learning_rate": 1.4842696629213485e-05,
491
+ "loss": 0.3979,
492
+ "step": 1380
493
+ },
494
+ {
495
+ "epoch": 7.86,
496
+ "grad_norm": 1.9085837602615356,
497
+ "learning_rate": 1.4767790262172286e-05,
498
+ "loss": 0.3894,
499
+ "step": 1400
500
+ },
501
+ {
502
+ "epoch": 7.97,
503
+ "grad_norm": 1.7573003768920898,
504
+ "learning_rate": 1.4692883895131088e-05,
505
+ "loss": 0.3751,
506
+ "step": 1420
507
+ },
508
+ {
509
+ "epoch": 8.08,
510
+ "grad_norm": 1.8974506855010986,
511
+ "learning_rate": 1.4617977528089889e-05,
512
+ "loss": 0.3936,
513
+ "step": 1440
514
+ },
515
+ {
516
+ "epoch": 8.19,
517
+ "grad_norm": 1.3843660354614258,
518
+ "learning_rate": 1.454307116104869e-05,
519
+ "loss": 0.3848,
520
+ "step": 1460
521
+ },
522
+ {
523
+ "epoch": 8.31,
524
+ "grad_norm": 1.525007724761963,
525
+ "learning_rate": 1.4468164794007492e-05,
526
+ "loss": 0.3552,
527
+ "step": 1480
528
+ },
529
+ {
530
+ "epoch": 8.42,
531
+ "grad_norm": 2.1665101051330566,
532
+ "learning_rate": 1.4393258426966291e-05,
533
+ "loss": 0.3547,
534
+ "step": 1500
535
+ },
536
+ {
537
+ "epoch": 8.53,
538
+ "grad_norm": 3.3614535331726074,
539
+ "learning_rate": 1.4318352059925096e-05,
540
+ "loss": 0.3771,
541
+ "step": 1520
542
+ },
543
+ {
544
+ "epoch": 8.64,
545
+ "grad_norm": 1.746299386024475,
546
+ "learning_rate": 1.4243445692883898e-05,
547
+ "loss": 0.396,
548
+ "step": 1540
549
+ },
550
+ {
551
+ "epoch": 8.75,
552
+ "grad_norm": 1.9144684076309204,
553
+ "learning_rate": 1.4168539325842699e-05,
554
+ "loss": 0.3748,
555
+ "step": 1560
556
+ },
557
+ {
558
+ "epoch": 8.87,
559
+ "grad_norm": 1.9617277383804321,
560
+ "learning_rate": 1.40936329588015e-05,
561
+ "loss": 0.3504,
562
+ "step": 1580
563
+ },
564
+ {
565
+ "epoch": 8.98,
566
+ "grad_norm": 2.69067645072937,
567
+ "learning_rate": 1.4018726591760302e-05,
568
+ "loss": 0.3477,
569
+ "step": 1600
570
+ },
571
+ {
572
+ "epoch": 9.09,
573
+ "grad_norm": 2.142008066177368,
574
+ "learning_rate": 1.3943820224719103e-05,
575
+ "loss": 0.3539,
576
+ "step": 1620
577
+ },
578
+ {
579
+ "epoch": 9.2,
580
+ "grad_norm": 1.7684266567230225,
581
+ "learning_rate": 1.3868913857677904e-05,
582
+ "loss": 0.3576,
583
+ "step": 1640
584
+ },
585
+ {
586
+ "epoch": 9.32,
587
+ "grad_norm": 1.4222275018692017,
588
+ "learning_rate": 1.3794007490636706e-05,
589
+ "loss": 0.3839,
590
+ "step": 1660
591
+ },
592
+ {
593
+ "epoch": 9.43,
594
+ "grad_norm": 2.0622501373291016,
595
+ "learning_rate": 1.3719101123595507e-05,
596
+ "loss": 0.3278,
597
+ "step": 1680
598
+ },
599
+ {
600
+ "epoch": 9.54,
601
+ "grad_norm": 1.639147400856018,
602
+ "learning_rate": 1.3644194756554308e-05,
603
+ "loss": 0.3374,
604
+ "step": 1700
605
+ },
606
+ {
607
+ "epoch": 9.65,
608
+ "grad_norm": 2.093045473098755,
609
+ "learning_rate": 1.356928838951311e-05,
610
+ "loss": 0.3535,
611
+ "step": 1720
612
+ },
613
+ {
614
+ "epoch": 9.76,
615
+ "grad_norm": 1.3492937088012695,
616
+ "learning_rate": 1.3494382022471911e-05,
617
+ "loss": 0.3105,
618
+ "step": 1740
619
+ },
620
+ {
621
+ "epoch": 9.88,
622
+ "grad_norm": 1.585205316543579,
623
+ "learning_rate": 1.3419475655430714e-05,
624
+ "loss": 0.3181,
625
+ "step": 1760
626
+ },
627
+ {
628
+ "epoch": 9.99,
629
+ "grad_norm": 2.8895344734191895,
630
+ "learning_rate": 1.3344569288389515e-05,
631
+ "loss": 0.3473,
632
+ "step": 1780
633
+ },
634
+ {
635
+ "epoch": 10.1,
636
+ "grad_norm": 1.7224748134613037,
637
+ "learning_rate": 1.3269662921348317e-05,
638
+ "loss": 0.3524,
639
+ "step": 1800
640
+ },
641
+ {
642
+ "epoch": 10.21,
643
+ "grad_norm": 2.1029868125915527,
644
+ "learning_rate": 1.3194756554307118e-05,
645
+ "loss": 0.3408,
646
+ "step": 1820
647
+ },
648
+ {
649
+ "epoch": 10.33,
650
+ "grad_norm": 2.434016227722168,
651
+ "learning_rate": 1.311985018726592e-05,
652
+ "loss": 0.3266,
653
+ "step": 1840
654
+ },
655
+ {
656
+ "epoch": 10.44,
657
+ "grad_norm": 1.953553318977356,
658
+ "learning_rate": 1.304494382022472e-05,
659
+ "loss": 0.2844,
660
+ "step": 1860
661
+ },
662
+ {
663
+ "epoch": 10.55,
664
+ "grad_norm": 2.5946218967437744,
665
+ "learning_rate": 1.2970037453183522e-05,
666
+ "loss": 0.3225,
667
+ "step": 1880
668
+ },
669
+ {
670
+ "epoch": 10.66,
671
+ "grad_norm": 2.5305733680725098,
672
+ "learning_rate": 1.2895131086142323e-05,
673
+ "loss": 0.3183,
674
+ "step": 1900
675
+ },
676
+ {
677
+ "epoch": 10.78,
678
+ "grad_norm": 3.56726336479187,
679
+ "learning_rate": 1.2820224719101125e-05,
680
+ "loss": 0.2944,
681
+ "step": 1920
682
+ },
683
+ {
684
+ "epoch": 10.89,
685
+ "grad_norm": 1.9687740802764893,
686
+ "learning_rate": 1.2745318352059926e-05,
687
+ "loss": 0.3411,
688
+ "step": 1940
689
+ },
690
+ {
691
+ "epoch": 11.0,
692
+ "grad_norm": 1.6027730703353882,
693
+ "learning_rate": 1.2670411985018727e-05,
694
+ "loss": 0.2949,
695
+ "step": 1960
696
+ },
697
+ {
698
+ "epoch": 11.11,
699
+ "grad_norm": 1.8739397525787354,
700
+ "learning_rate": 1.2595505617977529e-05,
701
+ "loss": 0.2716,
702
+ "step": 1980
703
+ },
704
+ {
705
+ "epoch": 11.22,
706
+ "grad_norm": 1.6741198301315308,
707
+ "learning_rate": 1.2520599250936332e-05,
708
+ "loss": 0.3334,
709
+ "step": 2000
710
+ },
711
+ {
712
+ "epoch": 11.34,
713
+ "grad_norm": 1.950945496559143,
714
+ "learning_rate": 1.2445692883895133e-05,
715
+ "loss": 0.3291,
716
+ "step": 2020
717
+ },
718
+ {
719
+ "epoch": 11.45,
720
+ "grad_norm": 1.9362170696258545,
721
+ "learning_rate": 1.2370786516853935e-05,
722
+ "loss": 0.2716,
723
+ "step": 2040
724
+ },
725
+ {
726
+ "epoch": 11.56,
727
+ "grad_norm": 1.6201746463775635,
728
+ "learning_rate": 1.2295880149812736e-05,
729
+ "loss": 0.2893,
730
+ "step": 2060
731
+ },
732
+ {
733
+ "epoch": 11.67,
734
+ "grad_norm": 3.488088607788086,
735
+ "learning_rate": 1.2220973782771537e-05,
736
+ "loss": 0.3239,
737
+ "step": 2080
738
+ },
739
+ {
740
+ "epoch": 11.79,
741
+ "grad_norm": 2.4608683586120605,
742
+ "learning_rate": 1.2146067415730339e-05,
743
+ "loss": 0.271,
744
+ "step": 2100
745
+ },
746
+ {
747
+ "epoch": 11.9,
748
+ "grad_norm": 1.5321098566055298,
749
+ "learning_rate": 1.207116104868914e-05,
750
+ "loss": 0.2876,
751
+ "step": 2120
752
+ },
753
+ {
754
+ "epoch": 12.01,
755
+ "grad_norm": 1.8334771394729614,
756
+ "learning_rate": 1.1996254681647941e-05,
757
+ "loss": 0.3066,
758
+ "step": 2140
759
+ },
760
+ {
761
+ "epoch": 12.12,
762
+ "grad_norm": 1.9506254196166992,
763
+ "learning_rate": 1.1921348314606743e-05,
764
+ "loss": 0.3023,
765
+ "step": 2160
766
+ },
767
+ {
768
+ "epoch": 12.23,
769
+ "grad_norm": 2.9073598384857178,
770
+ "learning_rate": 1.1846441947565544e-05,
771
+ "loss": 0.3152,
772
+ "step": 2180
773
+ },
774
+ {
775
+ "epoch": 12.35,
776
+ "grad_norm": 1.6023261547088623,
777
+ "learning_rate": 1.1771535580524345e-05,
778
+ "loss": 0.248,
779
+ "step": 2200
780
+ },
781
+ {
782
+ "epoch": 12.46,
783
+ "grad_norm": 1.7954633235931396,
784
+ "learning_rate": 1.1696629213483147e-05,
785
+ "loss": 0.2666,
786
+ "step": 2220
787
+ },
788
+ {
789
+ "epoch": 12.57,
790
+ "grad_norm": 2.0331828594207764,
791
+ "learning_rate": 1.162172284644195e-05,
792
+ "loss": 0.2878,
793
+ "step": 2240
794
+ },
795
+ {
796
+ "epoch": 12.68,
797
+ "grad_norm": 1.656420350074768,
798
+ "learning_rate": 1.1546816479400751e-05,
799
+ "loss": 0.2805,
800
+ "step": 2260
801
+ },
802
+ {
803
+ "epoch": 12.8,
804
+ "grad_norm": 1.5245873928070068,
805
+ "learning_rate": 1.1471910112359552e-05,
806
+ "loss": 0.2792,
807
+ "step": 2280
808
+ },
809
+ {
810
+ "epoch": 12.91,
811
+ "grad_norm": 2.6713974475860596,
812
+ "learning_rate": 1.1397003745318354e-05,
813
+ "loss": 0.2841,
814
+ "step": 2300
815
+ },
816
+ {
817
+ "epoch": 13.02,
818
+ "grad_norm": 1.268479347229004,
819
+ "learning_rate": 1.1322097378277155e-05,
820
+ "loss": 0.2708,
821
+ "step": 2320
822
+ },
823
+ {
824
+ "epoch": 13.13,
825
+ "grad_norm": 2.2990434169769287,
826
+ "learning_rate": 1.1247191011235956e-05,
827
+ "loss": 0.2649,
828
+ "step": 2340
829
+ },
830
+ {
831
+ "epoch": 13.24,
832
+ "grad_norm": 2.351956367492676,
833
+ "learning_rate": 1.1172284644194758e-05,
834
+ "loss": 0.281,
835
+ "step": 2360
836
+ },
837
+ {
838
+ "epoch": 13.36,
839
+ "grad_norm": 1.796783208847046,
840
+ "learning_rate": 1.1097378277153559e-05,
841
+ "loss": 0.2725,
842
+ "step": 2380
843
+ },
844
+ {
845
+ "epoch": 13.47,
846
+ "grad_norm": 1.7035847902297974,
847
+ "learning_rate": 1.102247191011236e-05,
848
+ "loss": 0.2799,
849
+ "step": 2400
850
+ },
851
+ {
852
+ "epoch": 13.58,
853
+ "grad_norm": 2.0395431518554688,
854
+ "learning_rate": 1.0947565543071162e-05,
855
+ "loss": 0.239,
856
+ "step": 2420
857
+ },
858
+ {
859
+ "epoch": 13.69,
860
+ "grad_norm": 1.8008232116699219,
861
+ "learning_rate": 1.0872659176029963e-05,
862
+ "loss": 0.2553,
863
+ "step": 2440
864
+ },
865
+ {
866
+ "epoch": 13.81,
867
+ "grad_norm": 2.0559043884277344,
868
+ "learning_rate": 1.0797752808988765e-05,
869
+ "loss": 0.2464,
870
+ "step": 2460
871
+ },
872
+ {
873
+ "epoch": 13.92,
874
+ "grad_norm": 1.8673292398452759,
875
+ "learning_rate": 1.0722846441947568e-05,
876
+ "loss": 0.2699,
877
+ "step": 2480
878
+ },
879
+ {
880
+ "epoch": 14.03,
881
+ "grad_norm": 1.6819398403167725,
882
+ "learning_rate": 1.0647940074906369e-05,
883
+ "loss": 0.2566,
884
+ "step": 2500
885
+ }
886
+ ],
887
+ "logging_steps": 20,
888
+ "max_steps": 5340,
889
+ "num_input_tokens_seen": 0,
890
+ "num_train_epochs": 30,
891
+ "save_steps": 500,
892
+ "total_flos": 6.497819467776e+18,
893
+ "train_batch_size": 1,
894
+ "trial_name": null,
895
+ "trial_params": null
896
+ }
checkpoint-2500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f06c12b5819a4aa76501d6843eae3aabbe49b1a33a2903a44bc34146ab4a74b6
3
+ size 4920
checkpoint-3000/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: sallywww/Llama-7B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.9.1.dev0
checkpoint-3000/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "sallywww/Llama-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-3000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed1867fa64146b7b1ce7f756adf3b65e3d5adcdd6664bd820c5c6e46b350d624
3
+ size 16794200
checkpoint-3000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:102c476762ab67e211043125d773688e484fe06593bef2ddd08f32903d6f8ae7
3
+ size 33662074
checkpoint-3000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5be1ea5df0fc5af5b70e3dd590bb085c9796985015fca4adc95bc5206f3cc904
3
+ size 14244
checkpoint-3000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd29ac10819a273a981a5d43f9590bffbc82cfcc94b53e85ed43cb1e875328c1
3
+ size 1064
checkpoint-3000/trainer_state.json ADDED
@@ -0,0 +1,1071 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 16.836197825324447,
5
+ "eval_steps": 500,
6
+ "global_step": 3000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.11,
13
+ "grad_norm": 0.5909375548362732,
14
+ "learning_rate": 1.9932584269662923e-05,
15
+ "loss": 2.0237,
16
+ "step": 20
17
+ },
18
+ {
19
+ "epoch": 0.22,
20
+ "grad_norm": 0.5826025009155273,
21
+ "learning_rate": 1.9857677902621722e-05,
22
+ "loss": 1.9306,
23
+ "step": 40
24
+ },
25
+ {
26
+ "epoch": 0.34,
27
+ "grad_norm": 0.5491089820861816,
28
+ "learning_rate": 1.9782771535580525e-05,
29
+ "loss": 1.7959,
30
+ "step": 60
31
+ },
32
+ {
33
+ "epoch": 0.45,
34
+ "grad_norm": 1.362810730934143,
35
+ "learning_rate": 1.970786516853933e-05,
36
+ "loss": 1.6599,
37
+ "step": 80
38
+ },
39
+ {
40
+ "epoch": 0.56,
41
+ "grad_norm": 1.4427486658096313,
42
+ "learning_rate": 1.963295880149813e-05,
43
+ "loss": 1.5685,
44
+ "step": 100
45
+ },
46
+ {
47
+ "epoch": 0.67,
48
+ "grad_norm": 0.9993659257888794,
49
+ "learning_rate": 1.956179775280899e-05,
50
+ "loss": 1.4621,
51
+ "step": 120
52
+ },
53
+ {
54
+ "epoch": 0.79,
55
+ "grad_norm": 1.614562749862671,
56
+ "learning_rate": 1.9486891385767793e-05,
57
+ "loss": 1.31,
58
+ "step": 140
59
+ },
60
+ {
61
+ "epoch": 0.9,
62
+ "grad_norm": 1.1975798606872559,
63
+ "learning_rate": 1.9411985018726593e-05,
64
+ "loss": 1.2322,
65
+ "step": 160
66
+ },
67
+ {
68
+ "epoch": 1.01,
69
+ "grad_norm": 0.7684128880500793,
70
+ "learning_rate": 1.9337078651685396e-05,
71
+ "loss": 1.1361,
72
+ "step": 180
73
+ },
74
+ {
75
+ "epoch": 1.12,
76
+ "grad_norm": 0.9336960911750793,
77
+ "learning_rate": 1.9262172284644195e-05,
78
+ "loss": 1.0797,
79
+ "step": 200
80
+ },
81
+ {
82
+ "epoch": 1.23,
83
+ "grad_norm": 0.8471770882606506,
84
+ "learning_rate": 1.9187265917603e-05,
85
+ "loss": 1.0368,
86
+ "step": 220
87
+ },
88
+ {
89
+ "epoch": 1.35,
90
+ "grad_norm": 1.111340045928955,
91
+ "learning_rate": 1.9112359550561798e-05,
92
+ "loss": 0.9738,
93
+ "step": 240
94
+ },
95
+ {
96
+ "epoch": 1.46,
97
+ "grad_norm": 0.8093781471252441,
98
+ "learning_rate": 1.90374531835206e-05,
99
+ "loss": 0.9494,
100
+ "step": 260
101
+ },
102
+ {
103
+ "epoch": 1.57,
104
+ "grad_norm": 0.8438062071800232,
105
+ "learning_rate": 1.89625468164794e-05,
106
+ "loss": 0.9276,
107
+ "step": 280
108
+ },
109
+ {
110
+ "epoch": 1.68,
111
+ "grad_norm": 0.9896701574325562,
112
+ "learning_rate": 1.8887640449438204e-05,
113
+ "loss": 0.8656,
114
+ "step": 300
115
+ },
116
+ {
117
+ "epoch": 1.8,
118
+ "grad_norm": 0.8278244137763977,
119
+ "learning_rate": 1.8812734082397007e-05,
120
+ "loss": 0.8431,
121
+ "step": 320
122
+ },
123
+ {
124
+ "epoch": 1.91,
125
+ "grad_norm": 0.931291937828064,
126
+ "learning_rate": 1.8737827715355807e-05,
127
+ "loss": 0.7945,
128
+ "step": 340
129
+ },
130
+ {
131
+ "epoch": 2.02,
132
+ "grad_norm": 1.21769380569458,
133
+ "learning_rate": 1.866292134831461e-05,
134
+ "loss": 0.7647,
135
+ "step": 360
136
+ },
137
+ {
138
+ "epoch": 2.13,
139
+ "grad_norm": 3.5183286666870117,
140
+ "learning_rate": 1.858801498127341e-05,
141
+ "loss": 0.7497,
142
+ "step": 380
143
+ },
144
+ {
145
+ "epoch": 2.24,
146
+ "grad_norm": 1.1153030395507812,
147
+ "learning_rate": 1.8513108614232212e-05,
148
+ "loss": 0.7507,
149
+ "step": 400
150
+ },
151
+ {
152
+ "epoch": 2.36,
153
+ "grad_norm": 1.0140526294708252,
154
+ "learning_rate": 1.8438202247191012e-05,
155
+ "loss": 0.7415,
156
+ "step": 420
157
+ },
158
+ {
159
+ "epoch": 2.47,
160
+ "grad_norm": 1.4395232200622559,
161
+ "learning_rate": 1.8363295880149815e-05,
162
+ "loss": 0.6947,
163
+ "step": 440
164
+ },
165
+ {
166
+ "epoch": 2.58,
167
+ "grad_norm": 1.4253089427947998,
168
+ "learning_rate": 1.8288389513108615e-05,
169
+ "loss": 0.7429,
170
+ "step": 460
171
+ },
172
+ {
173
+ "epoch": 2.69,
174
+ "grad_norm": 1.3152351379394531,
175
+ "learning_rate": 1.8213483146067418e-05,
176
+ "loss": 0.7363,
177
+ "step": 480
178
+ },
179
+ {
180
+ "epoch": 2.81,
181
+ "grad_norm": 2.5935957431793213,
182
+ "learning_rate": 1.8138576779026217e-05,
183
+ "loss": 0.6486,
184
+ "step": 500
185
+ },
186
+ {
187
+ "epoch": 2.92,
188
+ "grad_norm": 3.929158926010132,
189
+ "learning_rate": 1.806367041198502e-05,
190
+ "loss": 0.6395,
191
+ "step": 520
192
+ },
193
+ {
194
+ "epoch": 3.03,
195
+ "grad_norm": 1.7316572666168213,
196
+ "learning_rate": 1.7988764044943823e-05,
197
+ "loss": 0.664,
198
+ "step": 540
199
+ },
200
+ {
201
+ "epoch": 3.14,
202
+ "grad_norm": 1.3388841152191162,
203
+ "learning_rate": 1.7913857677902623e-05,
204
+ "loss": 0.6469,
205
+ "step": 560
206
+ },
207
+ {
208
+ "epoch": 3.25,
209
+ "grad_norm": 1.5258549451828003,
210
+ "learning_rate": 1.7838951310861426e-05,
211
+ "loss": 0.6662,
212
+ "step": 580
213
+ },
214
+ {
215
+ "epoch": 3.37,
216
+ "grad_norm": 1.5486094951629639,
217
+ "learning_rate": 1.7764044943820226e-05,
218
+ "loss": 0.566,
219
+ "step": 600
220
+ },
221
+ {
222
+ "epoch": 3.48,
223
+ "grad_norm": 1.5657902956008911,
224
+ "learning_rate": 1.768913857677903e-05,
225
+ "loss": 0.6166,
226
+ "step": 620
227
+ },
228
+ {
229
+ "epoch": 3.59,
230
+ "grad_norm": 1.5971391201019287,
231
+ "learning_rate": 1.761423220973783e-05,
232
+ "loss": 0.5973,
233
+ "step": 640
234
+ },
235
+ {
236
+ "epoch": 3.7,
237
+ "grad_norm": 1.333030343055725,
238
+ "learning_rate": 1.753932584269663e-05,
239
+ "loss": 0.6117,
240
+ "step": 660
241
+ },
242
+ {
243
+ "epoch": 3.82,
244
+ "grad_norm": 1.4425445795059204,
245
+ "learning_rate": 1.746441947565543e-05,
246
+ "loss": 0.5702,
247
+ "step": 680
248
+ },
249
+ {
250
+ "epoch": 3.93,
251
+ "grad_norm": 1.4773032665252686,
252
+ "learning_rate": 1.7389513108614234e-05,
253
+ "loss": 0.5465,
254
+ "step": 700
255
+ },
256
+ {
257
+ "epoch": 4.04,
258
+ "grad_norm": 1.3328267335891724,
259
+ "learning_rate": 1.7314606741573034e-05,
260
+ "loss": 0.5379,
261
+ "step": 720
262
+ },
263
+ {
264
+ "epoch": 4.15,
265
+ "grad_norm": 1.6961455345153809,
266
+ "learning_rate": 1.7239700374531837e-05,
267
+ "loss": 0.5492,
268
+ "step": 740
269
+ },
270
+ {
271
+ "epoch": 4.27,
272
+ "grad_norm": 1.4636189937591553,
273
+ "learning_rate": 1.7164794007490637e-05,
274
+ "loss": 0.547,
275
+ "step": 760
276
+ },
277
+ {
278
+ "epoch": 4.38,
279
+ "grad_norm": 2.1686649322509766,
280
+ "learning_rate": 1.708988764044944e-05,
281
+ "loss": 0.5424,
282
+ "step": 780
283
+ },
284
+ {
285
+ "epoch": 4.49,
286
+ "grad_norm": 1.219388723373413,
287
+ "learning_rate": 1.7014981273408243e-05,
288
+ "loss": 0.5373,
289
+ "step": 800
290
+ },
291
+ {
292
+ "epoch": 4.6,
293
+ "grad_norm": 1.5566452741622925,
294
+ "learning_rate": 1.6940074906367042e-05,
295
+ "loss": 0.4944,
296
+ "step": 820
297
+ },
298
+ {
299
+ "epoch": 4.71,
300
+ "grad_norm": 1.598917841911316,
301
+ "learning_rate": 1.6865168539325845e-05,
302
+ "loss": 0.5036,
303
+ "step": 840
304
+ },
305
+ {
306
+ "epoch": 4.83,
307
+ "grad_norm": 1.5281039476394653,
308
+ "learning_rate": 1.6790262172284645e-05,
309
+ "loss": 0.5215,
310
+ "step": 860
311
+ },
312
+ {
313
+ "epoch": 4.94,
314
+ "grad_norm": 1.7123130559921265,
315
+ "learning_rate": 1.6715355805243448e-05,
316
+ "loss": 0.5362,
317
+ "step": 880
318
+ },
319
+ {
320
+ "epoch": 5.05,
321
+ "grad_norm": 1.543447732925415,
322
+ "learning_rate": 1.6640449438202248e-05,
323
+ "loss": 0.5379,
324
+ "step": 900
325
+ },
326
+ {
327
+ "epoch": 5.16,
328
+ "grad_norm": 2.4190192222595215,
329
+ "learning_rate": 1.656554307116105e-05,
330
+ "loss": 0.4921,
331
+ "step": 920
332
+ },
333
+ {
334
+ "epoch": 5.28,
335
+ "grad_norm": 2.190906047821045,
336
+ "learning_rate": 1.649063670411985e-05,
337
+ "loss": 0.4652,
338
+ "step": 940
339
+ },
340
+ {
341
+ "epoch": 5.39,
342
+ "grad_norm": 2.113476514816284,
343
+ "learning_rate": 1.6415730337078653e-05,
344
+ "loss": 0.4914,
345
+ "step": 960
346
+ },
347
+ {
348
+ "epoch": 5.5,
349
+ "grad_norm": 1.8785656690597534,
350
+ "learning_rate": 1.6340823970037453e-05,
351
+ "loss": 0.5135,
352
+ "step": 980
353
+ },
354
+ {
355
+ "epoch": 5.61,
356
+ "grad_norm": 1.3745977878570557,
357
+ "learning_rate": 1.6265917602996256e-05,
358
+ "loss": 0.4697,
359
+ "step": 1000
360
+ },
361
+ {
362
+ "epoch": 5.72,
363
+ "grad_norm": 1.7874308824539185,
364
+ "learning_rate": 1.6191011235955056e-05,
365
+ "loss": 0.4625,
366
+ "step": 1020
367
+ },
368
+ {
369
+ "epoch": 5.84,
370
+ "grad_norm": 1.4448940753936768,
371
+ "learning_rate": 1.611610486891386e-05,
372
+ "loss": 0.4764,
373
+ "step": 1040
374
+ },
375
+ {
376
+ "epoch": 5.95,
377
+ "grad_norm": 2.278655767440796,
378
+ "learning_rate": 1.6041198501872662e-05,
379
+ "loss": 0.4221,
380
+ "step": 1060
381
+ },
382
+ {
383
+ "epoch": 6.06,
384
+ "grad_norm": 1.8602409362792969,
385
+ "learning_rate": 1.596629213483146e-05,
386
+ "loss": 0.4731,
387
+ "step": 1080
388
+ },
389
+ {
390
+ "epoch": 6.17,
391
+ "grad_norm": 1.884373426437378,
392
+ "learning_rate": 1.5891385767790265e-05,
393
+ "loss": 0.4241,
394
+ "step": 1100
395
+ },
396
+ {
397
+ "epoch": 6.29,
398
+ "grad_norm": 2.0259287357330322,
399
+ "learning_rate": 1.5816479400749064e-05,
400
+ "loss": 0.4368,
401
+ "step": 1120
402
+ },
403
+ {
404
+ "epoch": 6.4,
405
+ "grad_norm": 1.812462329864502,
406
+ "learning_rate": 1.5741573033707867e-05,
407
+ "loss": 0.442,
408
+ "step": 1140
409
+ },
410
+ {
411
+ "epoch": 6.51,
412
+ "grad_norm": 1.934327483177185,
413
+ "learning_rate": 1.5666666666666667e-05,
414
+ "loss": 0.4195,
415
+ "step": 1160
416
+ },
417
+ {
418
+ "epoch": 6.62,
419
+ "grad_norm": 1.6152955293655396,
420
+ "learning_rate": 1.559176029962547e-05,
421
+ "loss": 0.4374,
422
+ "step": 1180
423
+ },
424
+ {
425
+ "epoch": 6.73,
426
+ "grad_norm": 2.7782068252563477,
427
+ "learning_rate": 1.551685393258427e-05,
428
+ "loss": 0.4231,
429
+ "step": 1200
430
+ },
431
+ {
432
+ "epoch": 6.85,
433
+ "grad_norm": 2.372976303100586,
434
+ "learning_rate": 1.5441947565543073e-05,
435
+ "loss": 0.444,
436
+ "step": 1220
437
+ },
438
+ {
439
+ "epoch": 6.96,
440
+ "grad_norm": 2.171353816986084,
441
+ "learning_rate": 1.5367041198501872e-05,
442
+ "loss": 0.4389,
443
+ "step": 1240
444
+ },
445
+ {
446
+ "epoch": 7.07,
447
+ "grad_norm": 1.3093984127044678,
448
+ "learning_rate": 1.5292134831460675e-05,
449
+ "loss": 0.4301,
450
+ "step": 1260
451
+ },
452
+ {
453
+ "epoch": 7.18,
454
+ "grad_norm": 2.267932176589966,
455
+ "learning_rate": 1.5217228464419478e-05,
456
+ "loss": 0.4046,
457
+ "step": 1280
458
+ },
459
+ {
460
+ "epoch": 7.3,
461
+ "grad_norm": 1.5326164960861206,
462
+ "learning_rate": 1.514232209737828e-05,
463
+ "loss": 0.4068,
464
+ "step": 1300
465
+ },
466
+ {
467
+ "epoch": 7.41,
468
+ "grad_norm": 3.1525979042053223,
469
+ "learning_rate": 1.5067415730337081e-05,
470
+ "loss": 0.3847,
471
+ "step": 1320
472
+ },
473
+ {
474
+ "epoch": 7.52,
475
+ "grad_norm": 2.081890106201172,
476
+ "learning_rate": 1.4992509363295882e-05,
477
+ "loss": 0.4126,
478
+ "step": 1340
479
+ },
480
+ {
481
+ "epoch": 7.63,
482
+ "grad_norm": 2.5701358318328857,
483
+ "learning_rate": 1.4917602996254684e-05,
484
+ "loss": 0.4065,
485
+ "step": 1360
486
+ },
487
+ {
488
+ "epoch": 7.74,
489
+ "grad_norm": 1.4190051555633545,
490
+ "learning_rate": 1.4842696629213485e-05,
491
+ "loss": 0.3979,
492
+ "step": 1380
493
+ },
494
+ {
495
+ "epoch": 7.86,
496
+ "grad_norm": 1.9085837602615356,
497
+ "learning_rate": 1.4767790262172286e-05,
498
+ "loss": 0.3894,
499
+ "step": 1400
500
+ },
501
+ {
502
+ "epoch": 7.97,
503
+ "grad_norm": 1.7573003768920898,
504
+ "learning_rate": 1.4692883895131088e-05,
505
+ "loss": 0.3751,
506
+ "step": 1420
507
+ },
508
+ {
509
+ "epoch": 8.08,
510
+ "grad_norm": 1.8974506855010986,
511
+ "learning_rate": 1.4617977528089889e-05,
512
+ "loss": 0.3936,
513
+ "step": 1440
514
+ },
515
+ {
516
+ "epoch": 8.19,
517
+ "grad_norm": 1.3843660354614258,
518
+ "learning_rate": 1.454307116104869e-05,
519
+ "loss": 0.3848,
520
+ "step": 1460
521
+ },
522
+ {
523
+ "epoch": 8.31,
524
+ "grad_norm": 1.525007724761963,
525
+ "learning_rate": 1.4468164794007492e-05,
526
+ "loss": 0.3552,
527
+ "step": 1480
528
+ },
529
+ {
530
+ "epoch": 8.42,
531
+ "grad_norm": 2.1665101051330566,
532
+ "learning_rate": 1.4393258426966291e-05,
533
+ "loss": 0.3547,
534
+ "step": 1500
535
+ },
536
+ {
537
+ "epoch": 8.53,
538
+ "grad_norm": 3.3614535331726074,
539
+ "learning_rate": 1.4318352059925096e-05,
540
+ "loss": 0.3771,
541
+ "step": 1520
542
+ },
543
+ {
544
+ "epoch": 8.64,
545
+ "grad_norm": 1.746299386024475,
546
+ "learning_rate": 1.4243445692883898e-05,
547
+ "loss": 0.396,
548
+ "step": 1540
549
+ },
550
+ {
551
+ "epoch": 8.75,
552
+ "grad_norm": 1.9144684076309204,
553
+ "learning_rate": 1.4168539325842699e-05,
554
+ "loss": 0.3748,
555
+ "step": 1560
556
+ },
557
+ {
558
+ "epoch": 8.87,
559
+ "grad_norm": 1.9617277383804321,
560
+ "learning_rate": 1.40936329588015e-05,
561
+ "loss": 0.3504,
562
+ "step": 1580
563
+ },
564
+ {
565
+ "epoch": 8.98,
566
+ "grad_norm": 2.69067645072937,
567
+ "learning_rate": 1.4018726591760302e-05,
568
+ "loss": 0.3477,
569
+ "step": 1600
570
+ },
571
+ {
572
+ "epoch": 9.09,
573
+ "grad_norm": 2.142008066177368,
574
+ "learning_rate": 1.3943820224719103e-05,
575
+ "loss": 0.3539,
576
+ "step": 1620
577
+ },
578
+ {
579
+ "epoch": 9.2,
580
+ "grad_norm": 1.7684266567230225,
581
+ "learning_rate": 1.3868913857677904e-05,
582
+ "loss": 0.3576,
583
+ "step": 1640
584
+ },
585
+ {
586
+ "epoch": 9.32,
587
+ "grad_norm": 1.4222275018692017,
588
+ "learning_rate": 1.3794007490636706e-05,
589
+ "loss": 0.3839,
590
+ "step": 1660
591
+ },
592
+ {
593
+ "epoch": 9.43,
594
+ "grad_norm": 2.0622501373291016,
595
+ "learning_rate": 1.3719101123595507e-05,
596
+ "loss": 0.3278,
597
+ "step": 1680
598
+ },
599
+ {
600
+ "epoch": 9.54,
601
+ "grad_norm": 1.639147400856018,
602
+ "learning_rate": 1.3644194756554308e-05,
603
+ "loss": 0.3374,
604
+ "step": 1700
605
+ },
606
+ {
607
+ "epoch": 9.65,
608
+ "grad_norm": 2.093045473098755,
609
+ "learning_rate": 1.356928838951311e-05,
610
+ "loss": 0.3535,
611
+ "step": 1720
612
+ },
613
+ {
614
+ "epoch": 9.76,
615
+ "grad_norm": 1.3492937088012695,
616
+ "learning_rate": 1.3494382022471911e-05,
617
+ "loss": 0.3105,
618
+ "step": 1740
619
+ },
620
+ {
621
+ "epoch": 9.88,
622
+ "grad_norm": 1.585205316543579,
623
+ "learning_rate": 1.3419475655430714e-05,
624
+ "loss": 0.3181,
625
+ "step": 1760
626
+ },
627
+ {
628
+ "epoch": 9.99,
629
+ "grad_norm": 2.8895344734191895,
630
+ "learning_rate": 1.3344569288389515e-05,
631
+ "loss": 0.3473,
632
+ "step": 1780
633
+ },
634
+ {
635
+ "epoch": 10.1,
636
+ "grad_norm": 1.7224748134613037,
637
+ "learning_rate": 1.3269662921348317e-05,
638
+ "loss": 0.3524,
639
+ "step": 1800
640
+ },
641
+ {
642
+ "epoch": 10.21,
643
+ "grad_norm": 2.1029868125915527,
644
+ "learning_rate": 1.3194756554307118e-05,
645
+ "loss": 0.3408,
646
+ "step": 1820
647
+ },
648
+ {
649
+ "epoch": 10.33,
650
+ "grad_norm": 2.434016227722168,
651
+ "learning_rate": 1.311985018726592e-05,
652
+ "loss": 0.3266,
653
+ "step": 1840
654
+ },
655
+ {
656
+ "epoch": 10.44,
657
+ "grad_norm": 1.953553318977356,
658
+ "learning_rate": 1.304494382022472e-05,
659
+ "loss": 0.2844,
660
+ "step": 1860
661
+ },
662
+ {
663
+ "epoch": 10.55,
664
+ "grad_norm": 2.5946218967437744,
665
+ "learning_rate": 1.2970037453183522e-05,
666
+ "loss": 0.3225,
667
+ "step": 1880
668
+ },
669
+ {
670
+ "epoch": 10.66,
671
+ "grad_norm": 2.5305733680725098,
672
+ "learning_rate": 1.2895131086142323e-05,
673
+ "loss": 0.3183,
674
+ "step": 1900
675
+ },
676
+ {
677
+ "epoch": 10.78,
678
+ "grad_norm": 3.56726336479187,
679
+ "learning_rate": 1.2820224719101125e-05,
680
+ "loss": 0.2944,
681
+ "step": 1920
682
+ },
683
+ {
684
+ "epoch": 10.89,
685
+ "grad_norm": 1.9687740802764893,
686
+ "learning_rate": 1.2745318352059926e-05,
687
+ "loss": 0.3411,
688
+ "step": 1940
689
+ },
690
+ {
691
+ "epoch": 11.0,
692
+ "grad_norm": 1.6027730703353882,
693
+ "learning_rate": 1.2670411985018727e-05,
694
+ "loss": 0.2949,
695
+ "step": 1960
696
+ },
697
+ {
698
+ "epoch": 11.11,
699
+ "grad_norm": 1.8739397525787354,
700
+ "learning_rate": 1.2595505617977529e-05,
701
+ "loss": 0.2716,
702
+ "step": 1980
703
+ },
704
+ {
705
+ "epoch": 11.22,
706
+ "grad_norm": 1.6741198301315308,
707
+ "learning_rate": 1.2520599250936332e-05,
708
+ "loss": 0.3334,
709
+ "step": 2000
710
+ },
711
+ {
712
+ "epoch": 11.34,
713
+ "grad_norm": 1.950945496559143,
714
+ "learning_rate": 1.2445692883895133e-05,
715
+ "loss": 0.3291,
716
+ "step": 2020
717
+ },
718
+ {
719
+ "epoch": 11.45,
720
+ "grad_norm": 1.9362170696258545,
721
+ "learning_rate": 1.2370786516853935e-05,
722
+ "loss": 0.2716,
723
+ "step": 2040
724
+ },
725
+ {
726
+ "epoch": 11.56,
727
+ "grad_norm": 1.6201746463775635,
728
+ "learning_rate": 1.2295880149812736e-05,
729
+ "loss": 0.2893,
730
+ "step": 2060
731
+ },
732
+ {
733
+ "epoch": 11.67,
734
+ "grad_norm": 3.488088607788086,
735
+ "learning_rate": 1.2220973782771537e-05,
736
+ "loss": 0.3239,
737
+ "step": 2080
738
+ },
739
+ {
740
+ "epoch": 11.79,
741
+ "grad_norm": 2.4608683586120605,
742
+ "learning_rate": 1.2146067415730339e-05,
743
+ "loss": 0.271,
744
+ "step": 2100
745
+ },
746
+ {
747
+ "epoch": 11.9,
748
+ "grad_norm": 1.5321098566055298,
749
+ "learning_rate": 1.207116104868914e-05,
750
+ "loss": 0.2876,
751
+ "step": 2120
752
+ },
753
+ {
754
+ "epoch": 12.01,
755
+ "grad_norm": 1.8334771394729614,
756
+ "learning_rate": 1.1996254681647941e-05,
757
+ "loss": 0.3066,
758
+ "step": 2140
759
+ },
760
+ {
761
+ "epoch": 12.12,
762
+ "grad_norm": 1.9506254196166992,
763
+ "learning_rate": 1.1921348314606743e-05,
764
+ "loss": 0.3023,
765
+ "step": 2160
766
+ },
767
+ {
768
+ "epoch": 12.23,
769
+ "grad_norm": 2.9073598384857178,
770
+ "learning_rate": 1.1846441947565544e-05,
771
+ "loss": 0.3152,
772
+ "step": 2180
773
+ },
774
+ {
775
+ "epoch": 12.35,
776
+ "grad_norm": 1.6023261547088623,
777
+ "learning_rate": 1.1771535580524345e-05,
778
+ "loss": 0.248,
779
+ "step": 2200
780
+ },
781
+ {
782
+ "epoch": 12.46,
783
+ "grad_norm": 1.7954633235931396,
784
+ "learning_rate": 1.1696629213483147e-05,
785
+ "loss": 0.2666,
786
+ "step": 2220
787
+ },
788
+ {
789
+ "epoch": 12.57,
790
+ "grad_norm": 2.0331828594207764,
791
+ "learning_rate": 1.162172284644195e-05,
792
+ "loss": 0.2878,
793
+ "step": 2240
794
+ },
795
+ {
796
+ "epoch": 12.68,
797
+ "grad_norm": 1.656420350074768,
798
+ "learning_rate": 1.1546816479400751e-05,
799
+ "loss": 0.2805,
800
+ "step": 2260
801
+ },
802
+ {
803
+ "epoch": 12.8,
804
+ "grad_norm": 1.5245873928070068,
805
+ "learning_rate": 1.1471910112359552e-05,
806
+ "loss": 0.2792,
807
+ "step": 2280
808
+ },
809
+ {
810
+ "epoch": 12.91,
811
+ "grad_norm": 2.6713974475860596,
812
+ "learning_rate": 1.1397003745318354e-05,
813
+ "loss": 0.2841,
814
+ "step": 2300
815
+ },
816
+ {
817
+ "epoch": 13.02,
818
+ "grad_norm": 1.268479347229004,
819
+ "learning_rate": 1.1322097378277155e-05,
820
+ "loss": 0.2708,
821
+ "step": 2320
822
+ },
823
+ {
824
+ "epoch": 13.13,
825
+ "grad_norm": 2.2990434169769287,
826
+ "learning_rate": 1.1247191011235956e-05,
827
+ "loss": 0.2649,
828
+ "step": 2340
829
+ },
830
+ {
831
+ "epoch": 13.24,
832
+ "grad_norm": 2.351956367492676,
833
+ "learning_rate": 1.1172284644194758e-05,
834
+ "loss": 0.281,
835
+ "step": 2360
836
+ },
837
+ {
838
+ "epoch": 13.36,
839
+ "grad_norm": 1.796783208847046,
840
+ "learning_rate": 1.1097378277153559e-05,
841
+ "loss": 0.2725,
842
+ "step": 2380
843
+ },
844
+ {
845
+ "epoch": 13.47,
846
+ "grad_norm": 1.7035847902297974,
847
+ "learning_rate": 1.102247191011236e-05,
848
+ "loss": 0.2799,
849
+ "step": 2400
850
+ },
851
+ {
852
+ "epoch": 13.58,
853
+ "grad_norm": 2.0395431518554688,
854
+ "learning_rate": 1.0947565543071162e-05,
855
+ "loss": 0.239,
856
+ "step": 2420
857
+ },
858
+ {
859
+ "epoch": 13.69,
860
+ "grad_norm": 1.8008232116699219,
861
+ "learning_rate": 1.0872659176029963e-05,
862
+ "loss": 0.2553,
863
+ "step": 2440
864
+ },
865
+ {
866
+ "epoch": 13.81,
867
+ "grad_norm": 2.0559043884277344,
868
+ "learning_rate": 1.0797752808988765e-05,
869
+ "loss": 0.2464,
870
+ "step": 2460
871
+ },
872
+ {
873
+ "epoch": 13.92,
874
+ "grad_norm": 1.8673292398452759,
875
+ "learning_rate": 1.0722846441947568e-05,
876
+ "loss": 0.2699,
877
+ "step": 2480
878
+ },
879
+ {
880
+ "epoch": 14.03,
881
+ "grad_norm": 1.6819398403167725,
882
+ "learning_rate": 1.0647940074906369e-05,
883
+ "loss": 0.2566,
884
+ "step": 2500
885
+ },
886
+ {
887
+ "epoch": 14.14,
888
+ "grad_norm": 1.9703686237335205,
889
+ "learning_rate": 1.057303370786517e-05,
890
+ "loss": 0.2807,
891
+ "step": 2520
892
+ },
893
+ {
894
+ "epoch": 14.25,
895
+ "grad_norm": 2.028834819793701,
896
+ "learning_rate": 1.0498127340823972e-05,
897
+ "loss": 0.2392,
898
+ "step": 2540
899
+ },
900
+ {
901
+ "epoch": 14.37,
902
+ "grad_norm": 2.2455177307128906,
903
+ "learning_rate": 1.0423220973782773e-05,
904
+ "loss": 0.247,
905
+ "step": 2560
906
+ },
907
+ {
908
+ "epoch": 14.48,
909
+ "grad_norm": 1.8078291416168213,
910
+ "learning_rate": 1.0348314606741574e-05,
911
+ "loss": 0.2552,
912
+ "step": 2580
913
+ },
914
+ {
915
+ "epoch": 14.59,
916
+ "grad_norm": 2.166729211807251,
917
+ "learning_rate": 1.0273408239700376e-05,
918
+ "loss": 0.2466,
919
+ "step": 2600
920
+ },
921
+ {
922
+ "epoch": 14.7,
923
+ "grad_norm": 2.710556745529175,
924
+ "learning_rate": 1.0198501872659177e-05,
925
+ "loss": 0.2506,
926
+ "step": 2620
927
+ },
928
+ {
929
+ "epoch": 14.82,
930
+ "grad_norm": 2.1344659328460693,
931
+ "learning_rate": 1.0123595505617978e-05,
932
+ "loss": 0.2388,
933
+ "step": 2640
934
+ },
935
+ {
936
+ "epoch": 14.93,
937
+ "grad_norm": 1.595842719078064,
938
+ "learning_rate": 1.004868913857678e-05,
939
+ "loss": 0.2553,
940
+ "step": 2660
941
+ },
942
+ {
943
+ "epoch": 15.04,
944
+ "grad_norm": 1.5458731651306152,
945
+ "learning_rate": 9.973782771535581e-06,
946
+ "loss": 0.2478,
947
+ "step": 2680
948
+ },
949
+ {
950
+ "epoch": 15.15,
951
+ "grad_norm": 1.9514356851577759,
952
+ "learning_rate": 9.898876404494382e-06,
953
+ "loss": 0.234,
954
+ "step": 2700
955
+ },
956
+ {
957
+ "epoch": 15.26,
958
+ "grad_norm": 2.1551694869995117,
959
+ "learning_rate": 9.823970037453184e-06,
960
+ "loss": 0.251,
961
+ "step": 2720
962
+ },
963
+ {
964
+ "epoch": 15.38,
965
+ "grad_norm": 2.08258318901062,
966
+ "learning_rate": 9.749063670411985e-06,
967
+ "loss": 0.2511,
968
+ "step": 2740
969
+ },
970
+ {
971
+ "epoch": 15.49,
972
+ "grad_norm": 1.581690788269043,
973
+ "learning_rate": 9.674157303370786e-06,
974
+ "loss": 0.2185,
975
+ "step": 2760
976
+ },
977
+ {
978
+ "epoch": 15.6,
979
+ "grad_norm": 2.2121975421905518,
980
+ "learning_rate": 9.599250936329588e-06,
981
+ "loss": 0.2161,
982
+ "step": 2780
983
+ },
984
+ {
985
+ "epoch": 15.71,
986
+ "grad_norm": 1.5077215433120728,
987
+ "learning_rate": 9.52434456928839e-06,
988
+ "loss": 0.2308,
989
+ "step": 2800
990
+ },
991
+ {
992
+ "epoch": 15.83,
993
+ "grad_norm": 2.57951021194458,
994
+ "learning_rate": 9.449438202247192e-06,
995
+ "loss": 0.2299,
996
+ "step": 2820
997
+ },
998
+ {
999
+ "epoch": 15.94,
1000
+ "grad_norm": 1.6634414196014404,
1001
+ "learning_rate": 9.374531835205993e-06,
1002
+ "loss": 0.2576,
1003
+ "step": 2840
1004
+ },
1005
+ {
1006
+ "epoch": 16.05,
1007
+ "grad_norm": 1.9692113399505615,
1008
+ "learning_rate": 9.299625468164795e-06,
1009
+ "loss": 0.2395,
1010
+ "step": 2860
1011
+ },
1012
+ {
1013
+ "epoch": 16.16,
1014
+ "grad_norm": 1.9327415227890015,
1015
+ "learning_rate": 9.224719101123596e-06,
1016
+ "loss": 0.241,
1017
+ "step": 2880
1018
+ },
1019
+ {
1020
+ "epoch": 16.27,
1021
+ "grad_norm": 1.7675727605819702,
1022
+ "learning_rate": 9.149812734082398e-06,
1023
+ "loss": 0.2201,
1024
+ "step": 2900
1025
+ },
1026
+ {
1027
+ "epoch": 16.39,
1028
+ "grad_norm": 1.9511345624923706,
1029
+ "learning_rate": 9.074906367041199e-06,
1030
+ "loss": 0.2171,
1031
+ "step": 2920
1032
+ },
1033
+ {
1034
+ "epoch": 16.5,
1035
+ "grad_norm": 1.7937383651733398,
1036
+ "learning_rate": 9e-06,
1037
+ "loss": 0.2286,
1038
+ "step": 2940
1039
+ },
1040
+ {
1041
+ "epoch": 16.61,
1042
+ "grad_norm": 1.79076087474823,
1043
+ "learning_rate": 8.925093632958802e-06,
1044
+ "loss": 0.2479,
1045
+ "step": 2960
1046
+ },
1047
+ {
1048
+ "epoch": 16.72,
1049
+ "grad_norm": 2.4045145511627197,
1050
+ "learning_rate": 8.850187265917603e-06,
1051
+ "loss": 0.2153,
1052
+ "step": 2980
1053
+ },
1054
+ {
1055
+ "epoch": 16.84,
1056
+ "grad_norm": 2.1934499740600586,
1057
+ "learning_rate": 8.775280898876404e-06,
1058
+ "loss": 0.2361,
1059
+ "step": 3000
1060
+ }
1061
+ ],
1062
+ "logging_steps": 20,
1063
+ "max_steps": 5340,
1064
+ "num_input_tokens_seen": 0,
1065
+ "num_train_epochs": 30,
1066
+ "save_steps": 500,
1067
+ "total_flos": 7.7973833613312e+18,
1068
+ "train_batch_size": 1,
1069
+ "trial_name": null,
1070
+ "trial_params": null
1071
+ }
checkpoint-3000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f06c12b5819a4aa76501d6843eae3aabbe49b1a33a2903a44bc34146ab4a74b6
3
+ size 4920
checkpoint-3500/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: sallywww/Llama-7B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.9.1.dev0
checkpoint-3500/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "sallywww/Llama-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-3500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:579a43d26a6a19d21c576c5316a79d4f42e833e6891a97c9c1e99e0db8fa6631
3
+ size 16794200
checkpoint-3500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94ea1c695c77353d53125d18efe53a5c98033f75aa4bb43fd4661b3d9f1f7683
3
+ size 33662074
checkpoint-3500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36312752df00181a36fce8a132c5e65726626dfaa46115098e729752ec3f2007
3
+ size 14244
checkpoint-3500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34747f1b847b210032a267ca34d4f4848d59d492b90b28f1381ca49e0b518b5b
3
+ size 1064
checkpoint-3500/trainer_state.json ADDED
@@ -0,0 +1,1246 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 19.642230796211855,
5
+ "eval_steps": 500,
6
+ "global_step": 3500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.11,
13
+ "grad_norm": 0.5909375548362732,
14
+ "learning_rate": 1.9932584269662923e-05,
15
+ "loss": 2.0237,
16
+ "step": 20
17
+ },
18
+ {
19
+ "epoch": 0.22,
20
+ "grad_norm": 0.5826025009155273,
21
+ "learning_rate": 1.9857677902621722e-05,
22
+ "loss": 1.9306,
23
+ "step": 40
24
+ },
25
+ {
26
+ "epoch": 0.34,
27
+ "grad_norm": 0.5491089820861816,
28
+ "learning_rate": 1.9782771535580525e-05,
29
+ "loss": 1.7959,
30
+ "step": 60
31
+ },
32
+ {
33
+ "epoch": 0.45,
34
+ "grad_norm": 1.362810730934143,
35
+ "learning_rate": 1.970786516853933e-05,
36
+ "loss": 1.6599,
37
+ "step": 80
38
+ },
39
+ {
40
+ "epoch": 0.56,
41
+ "grad_norm": 1.4427486658096313,
42
+ "learning_rate": 1.963295880149813e-05,
43
+ "loss": 1.5685,
44
+ "step": 100
45
+ },
46
+ {
47
+ "epoch": 0.67,
48
+ "grad_norm": 0.9993659257888794,
49
+ "learning_rate": 1.956179775280899e-05,
50
+ "loss": 1.4621,
51
+ "step": 120
52
+ },
53
+ {
54
+ "epoch": 0.79,
55
+ "grad_norm": 1.614562749862671,
56
+ "learning_rate": 1.9486891385767793e-05,
57
+ "loss": 1.31,
58
+ "step": 140
59
+ },
60
+ {
61
+ "epoch": 0.9,
62
+ "grad_norm": 1.1975798606872559,
63
+ "learning_rate": 1.9411985018726593e-05,
64
+ "loss": 1.2322,
65
+ "step": 160
66
+ },
67
+ {
68
+ "epoch": 1.01,
69
+ "grad_norm": 0.7684128880500793,
70
+ "learning_rate": 1.9337078651685396e-05,
71
+ "loss": 1.1361,
72
+ "step": 180
73
+ },
74
+ {
75
+ "epoch": 1.12,
76
+ "grad_norm": 0.9336960911750793,
77
+ "learning_rate": 1.9262172284644195e-05,
78
+ "loss": 1.0797,
79
+ "step": 200
80
+ },
81
+ {
82
+ "epoch": 1.23,
83
+ "grad_norm": 0.8471770882606506,
84
+ "learning_rate": 1.9187265917603e-05,
85
+ "loss": 1.0368,
86
+ "step": 220
87
+ },
88
+ {
89
+ "epoch": 1.35,
90
+ "grad_norm": 1.111340045928955,
91
+ "learning_rate": 1.9112359550561798e-05,
92
+ "loss": 0.9738,
93
+ "step": 240
94
+ },
95
+ {
96
+ "epoch": 1.46,
97
+ "grad_norm": 0.8093781471252441,
98
+ "learning_rate": 1.90374531835206e-05,
99
+ "loss": 0.9494,
100
+ "step": 260
101
+ },
102
+ {
103
+ "epoch": 1.57,
104
+ "grad_norm": 0.8438062071800232,
105
+ "learning_rate": 1.89625468164794e-05,
106
+ "loss": 0.9276,
107
+ "step": 280
108
+ },
109
+ {
110
+ "epoch": 1.68,
111
+ "grad_norm": 0.9896701574325562,
112
+ "learning_rate": 1.8887640449438204e-05,
113
+ "loss": 0.8656,
114
+ "step": 300
115
+ },
116
+ {
117
+ "epoch": 1.8,
118
+ "grad_norm": 0.8278244137763977,
119
+ "learning_rate": 1.8812734082397007e-05,
120
+ "loss": 0.8431,
121
+ "step": 320
122
+ },
123
+ {
124
+ "epoch": 1.91,
125
+ "grad_norm": 0.931291937828064,
126
+ "learning_rate": 1.8737827715355807e-05,
127
+ "loss": 0.7945,
128
+ "step": 340
129
+ },
130
+ {
131
+ "epoch": 2.02,
132
+ "grad_norm": 1.21769380569458,
133
+ "learning_rate": 1.866292134831461e-05,
134
+ "loss": 0.7647,
135
+ "step": 360
136
+ },
137
+ {
138
+ "epoch": 2.13,
139
+ "grad_norm": 3.5183286666870117,
140
+ "learning_rate": 1.858801498127341e-05,
141
+ "loss": 0.7497,
142
+ "step": 380
143
+ },
144
+ {
145
+ "epoch": 2.24,
146
+ "grad_norm": 1.1153030395507812,
147
+ "learning_rate": 1.8513108614232212e-05,
148
+ "loss": 0.7507,
149
+ "step": 400
150
+ },
151
+ {
152
+ "epoch": 2.36,
153
+ "grad_norm": 1.0140526294708252,
154
+ "learning_rate": 1.8438202247191012e-05,
155
+ "loss": 0.7415,
156
+ "step": 420
157
+ },
158
+ {
159
+ "epoch": 2.47,
160
+ "grad_norm": 1.4395232200622559,
161
+ "learning_rate": 1.8363295880149815e-05,
162
+ "loss": 0.6947,
163
+ "step": 440
164
+ },
165
+ {
166
+ "epoch": 2.58,
167
+ "grad_norm": 1.4253089427947998,
168
+ "learning_rate": 1.8288389513108615e-05,
169
+ "loss": 0.7429,
170
+ "step": 460
171
+ },
172
+ {
173
+ "epoch": 2.69,
174
+ "grad_norm": 1.3152351379394531,
175
+ "learning_rate": 1.8213483146067418e-05,
176
+ "loss": 0.7363,
177
+ "step": 480
178
+ },
179
+ {
180
+ "epoch": 2.81,
181
+ "grad_norm": 2.5935957431793213,
182
+ "learning_rate": 1.8138576779026217e-05,
183
+ "loss": 0.6486,
184
+ "step": 500
185
+ },
186
+ {
187
+ "epoch": 2.92,
188
+ "grad_norm": 3.929158926010132,
189
+ "learning_rate": 1.806367041198502e-05,
190
+ "loss": 0.6395,
191
+ "step": 520
192
+ },
193
+ {
194
+ "epoch": 3.03,
195
+ "grad_norm": 1.7316572666168213,
196
+ "learning_rate": 1.7988764044943823e-05,
197
+ "loss": 0.664,
198
+ "step": 540
199
+ },
200
+ {
201
+ "epoch": 3.14,
202
+ "grad_norm": 1.3388841152191162,
203
+ "learning_rate": 1.7913857677902623e-05,
204
+ "loss": 0.6469,
205
+ "step": 560
206
+ },
207
+ {
208
+ "epoch": 3.25,
209
+ "grad_norm": 1.5258549451828003,
210
+ "learning_rate": 1.7838951310861426e-05,
211
+ "loss": 0.6662,
212
+ "step": 580
213
+ },
214
+ {
215
+ "epoch": 3.37,
216
+ "grad_norm": 1.5486094951629639,
217
+ "learning_rate": 1.7764044943820226e-05,
218
+ "loss": 0.566,
219
+ "step": 600
220
+ },
221
+ {
222
+ "epoch": 3.48,
223
+ "grad_norm": 1.5657902956008911,
224
+ "learning_rate": 1.768913857677903e-05,
225
+ "loss": 0.6166,
226
+ "step": 620
227
+ },
228
+ {
229
+ "epoch": 3.59,
230
+ "grad_norm": 1.5971391201019287,
231
+ "learning_rate": 1.761423220973783e-05,
232
+ "loss": 0.5973,
233
+ "step": 640
234
+ },
235
+ {
236
+ "epoch": 3.7,
237
+ "grad_norm": 1.333030343055725,
238
+ "learning_rate": 1.753932584269663e-05,
239
+ "loss": 0.6117,
240
+ "step": 660
241
+ },
242
+ {
243
+ "epoch": 3.82,
244
+ "grad_norm": 1.4425445795059204,
245
+ "learning_rate": 1.746441947565543e-05,
246
+ "loss": 0.5702,
247
+ "step": 680
248
+ },
249
+ {
250
+ "epoch": 3.93,
251
+ "grad_norm": 1.4773032665252686,
252
+ "learning_rate": 1.7389513108614234e-05,
253
+ "loss": 0.5465,
254
+ "step": 700
255
+ },
256
+ {
257
+ "epoch": 4.04,
258
+ "grad_norm": 1.3328267335891724,
259
+ "learning_rate": 1.7314606741573034e-05,
260
+ "loss": 0.5379,
261
+ "step": 720
262
+ },
263
+ {
264
+ "epoch": 4.15,
265
+ "grad_norm": 1.6961455345153809,
266
+ "learning_rate": 1.7239700374531837e-05,
267
+ "loss": 0.5492,
268
+ "step": 740
269
+ },
270
+ {
271
+ "epoch": 4.27,
272
+ "grad_norm": 1.4636189937591553,
273
+ "learning_rate": 1.7164794007490637e-05,
274
+ "loss": 0.547,
275
+ "step": 760
276
+ },
277
+ {
278
+ "epoch": 4.38,
279
+ "grad_norm": 2.1686649322509766,
280
+ "learning_rate": 1.708988764044944e-05,
281
+ "loss": 0.5424,
282
+ "step": 780
283
+ },
284
+ {
285
+ "epoch": 4.49,
286
+ "grad_norm": 1.219388723373413,
287
+ "learning_rate": 1.7014981273408243e-05,
288
+ "loss": 0.5373,
289
+ "step": 800
290
+ },
291
+ {
292
+ "epoch": 4.6,
293
+ "grad_norm": 1.5566452741622925,
294
+ "learning_rate": 1.6940074906367042e-05,
295
+ "loss": 0.4944,
296
+ "step": 820
297
+ },
298
+ {
299
+ "epoch": 4.71,
300
+ "grad_norm": 1.598917841911316,
301
+ "learning_rate": 1.6865168539325845e-05,
302
+ "loss": 0.5036,
303
+ "step": 840
304
+ },
305
+ {
306
+ "epoch": 4.83,
307
+ "grad_norm": 1.5281039476394653,
308
+ "learning_rate": 1.6790262172284645e-05,
309
+ "loss": 0.5215,
310
+ "step": 860
311
+ },
312
+ {
313
+ "epoch": 4.94,
314
+ "grad_norm": 1.7123130559921265,
315
+ "learning_rate": 1.6715355805243448e-05,
316
+ "loss": 0.5362,
317
+ "step": 880
318
+ },
319
+ {
320
+ "epoch": 5.05,
321
+ "grad_norm": 1.543447732925415,
322
+ "learning_rate": 1.6640449438202248e-05,
323
+ "loss": 0.5379,
324
+ "step": 900
325
+ },
326
+ {
327
+ "epoch": 5.16,
328
+ "grad_norm": 2.4190192222595215,
329
+ "learning_rate": 1.656554307116105e-05,
330
+ "loss": 0.4921,
331
+ "step": 920
332
+ },
333
+ {
334
+ "epoch": 5.28,
335
+ "grad_norm": 2.190906047821045,
336
+ "learning_rate": 1.649063670411985e-05,
337
+ "loss": 0.4652,
338
+ "step": 940
339
+ },
340
+ {
341
+ "epoch": 5.39,
342
+ "grad_norm": 2.113476514816284,
343
+ "learning_rate": 1.6415730337078653e-05,
344
+ "loss": 0.4914,
345
+ "step": 960
346
+ },
347
+ {
348
+ "epoch": 5.5,
349
+ "grad_norm": 1.8785656690597534,
350
+ "learning_rate": 1.6340823970037453e-05,
351
+ "loss": 0.5135,
352
+ "step": 980
353
+ },
354
+ {
355
+ "epoch": 5.61,
356
+ "grad_norm": 1.3745977878570557,
357
+ "learning_rate": 1.6265917602996256e-05,
358
+ "loss": 0.4697,
359
+ "step": 1000
360
+ },
361
+ {
362
+ "epoch": 5.72,
363
+ "grad_norm": 1.7874308824539185,
364
+ "learning_rate": 1.6191011235955056e-05,
365
+ "loss": 0.4625,
366
+ "step": 1020
367
+ },
368
+ {
369
+ "epoch": 5.84,
370
+ "grad_norm": 1.4448940753936768,
371
+ "learning_rate": 1.611610486891386e-05,
372
+ "loss": 0.4764,
373
+ "step": 1040
374
+ },
375
+ {
376
+ "epoch": 5.95,
377
+ "grad_norm": 2.278655767440796,
378
+ "learning_rate": 1.6041198501872662e-05,
379
+ "loss": 0.4221,
380
+ "step": 1060
381
+ },
382
+ {
383
+ "epoch": 6.06,
384
+ "grad_norm": 1.8602409362792969,
385
+ "learning_rate": 1.596629213483146e-05,
386
+ "loss": 0.4731,
387
+ "step": 1080
388
+ },
389
+ {
390
+ "epoch": 6.17,
391
+ "grad_norm": 1.884373426437378,
392
+ "learning_rate": 1.5891385767790265e-05,
393
+ "loss": 0.4241,
394
+ "step": 1100
395
+ },
396
+ {
397
+ "epoch": 6.29,
398
+ "grad_norm": 2.0259287357330322,
399
+ "learning_rate": 1.5816479400749064e-05,
400
+ "loss": 0.4368,
401
+ "step": 1120
402
+ },
403
+ {
404
+ "epoch": 6.4,
405
+ "grad_norm": 1.812462329864502,
406
+ "learning_rate": 1.5741573033707867e-05,
407
+ "loss": 0.442,
408
+ "step": 1140
409
+ },
410
+ {
411
+ "epoch": 6.51,
412
+ "grad_norm": 1.934327483177185,
413
+ "learning_rate": 1.5666666666666667e-05,
414
+ "loss": 0.4195,
415
+ "step": 1160
416
+ },
417
+ {
418
+ "epoch": 6.62,
419
+ "grad_norm": 1.6152955293655396,
420
+ "learning_rate": 1.559176029962547e-05,
421
+ "loss": 0.4374,
422
+ "step": 1180
423
+ },
424
+ {
425
+ "epoch": 6.73,
426
+ "grad_norm": 2.7782068252563477,
427
+ "learning_rate": 1.551685393258427e-05,
428
+ "loss": 0.4231,
429
+ "step": 1200
430
+ },
431
+ {
432
+ "epoch": 6.85,
433
+ "grad_norm": 2.372976303100586,
434
+ "learning_rate": 1.5441947565543073e-05,
435
+ "loss": 0.444,
436
+ "step": 1220
437
+ },
438
+ {
439
+ "epoch": 6.96,
440
+ "grad_norm": 2.171353816986084,
441
+ "learning_rate": 1.5367041198501872e-05,
442
+ "loss": 0.4389,
443
+ "step": 1240
444
+ },
445
+ {
446
+ "epoch": 7.07,
447
+ "grad_norm": 1.3093984127044678,
448
+ "learning_rate": 1.5292134831460675e-05,
449
+ "loss": 0.4301,
450
+ "step": 1260
451
+ },
452
+ {
453
+ "epoch": 7.18,
454
+ "grad_norm": 2.267932176589966,
455
+ "learning_rate": 1.5217228464419478e-05,
456
+ "loss": 0.4046,
457
+ "step": 1280
458
+ },
459
+ {
460
+ "epoch": 7.3,
461
+ "grad_norm": 1.5326164960861206,
462
+ "learning_rate": 1.514232209737828e-05,
463
+ "loss": 0.4068,
464
+ "step": 1300
465
+ },
466
+ {
467
+ "epoch": 7.41,
468
+ "grad_norm": 3.1525979042053223,
469
+ "learning_rate": 1.5067415730337081e-05,
470
+ "loss": 0.3847,
471
+ "step": 1320
472
+ },
473
+ {
474
+ "epoch": 7.52,
475
+ "grad_norm": 2.081890106201172,
476
+ "learning_rate": 1.4992509363295882e-05,
477
+ "loss": 0.4126,
478
+ "step": 1340
479
+ },
480
+ {
481
+ "epoch": 7.63,
482
+ "grad_norm": 2.5701358318328857,
483
+ "learning_rate": 1.4917602996254684e-05,
484
+ "loss": 0.4065,
485
+ "step": 1360
486
+ },
487
+ {
488
+ "epoch": 7.74,
489
+ "grad_norm": 1.4190051555633545,
490
+ "learning_rate": 1.4842696629213485e-05,
491
+ "loss": 0.3979,
492
+ "step": 1380
493
+ },
494
+ {
495
+ "epoch": 7.86,
496
+ "grad_norm": 1.9085837602615356,
497
+ "learning_rate": 1.4767790262172286e-05,
498
+ "loss": 0.3894,
499
+ "step": 1400
500
+ },
501
+ {
502
+ "epoch": 7.97,
503
+ "grad_norm": 1.7573003768920898,
504
+ "learning_rate": 1.4692883895131088e-05,
505
+ "loss": 0.3751,
506
+ "step": 1420
507
+ },
508
+ {
509
+ "epoch": 8.08,
510
+ "grad_norm": 1.8974506855010986,
511
+ "learning_rate": 1.4617977528089889e-05,
512
+ "loss": 0.3936,
513
+ "step": 1440
514
+ },
515
+ {
516
+ "epoch": 8.19,
517
+ "grad_norm": 1.3843660354614258,
518
+ "learning_rate": 1.454307116104869e-05,
519
+ "loss": 0.3848,
520
+ "step": 1460
521
+ },
522
+ {
523
+ "epoch": 8.31,
524
+ "grad_norm": 1.525007724761963,
525
+ "learning_rate": 1.4468164794007492e-05,
526
+ "loss": 0.3552,
527
+ "step": 1480
528
+ },
529
+ {
530
+ "epoch": 8.42,
531
+ "grad_norm": 2.1665101051330566,
532
+ "learning_rate": 1.4393258426966291e-05,
533
+ "loss": 0.3547,
534
+ "step": 1500
535
+ },
536
+ {
537
+ "epoch": 8.53,
538
+ "grad_norm": 3.3614535331726074,
539
+ "learning_rate": 1.4318352059925096e-05,
540
+ "loss": 0.3771,
541
+ "step": 1520
542
+ },
543
+ {
544
+ "epoch": 8.64,
545
+ "grad_norm": 1.746299386024475,
546
+ "learning_rate": 1.4243445692883898e-05,
547
+ "loss": 0.396,
548
+ "step": 1540
549
+ },
550
+ {
551
+ "epoch": 8.75,
552
+ "grad_norm": 1.9144684076309204,
553
+ "learning_rate": 1.4168539325842699e-05,
554
+ "loss": 0.3748,
555
+ "step": 1560
556
+ },
557
+ {
558
+ "epoch": 8.87,
559
+ "grad_norm": 1.9617277383804321,
560
+ "learning_rate": 1.40936329588015e-05,
561
+ "loss": 0.3504,
562
+ "step": 1580
563
+ },
564
+ {
565
+ "epoch": 8.98,
566
+ "grad_norm": 2.69067645072937,
567
+ "learning_rate": 1.4018726591760302e-05,
568
+ "loss": 0.3477,
569
+ "step": 1600
570
+ },
571
+ {
572
+ "epoch": 9.09,
573
+ "grad_norm": 2.142008066177368,
574
+ "learning_rate": 1.3943820224719103e-05,
575
+ "loss": 0.3539,
576
+ "step": 1620
577
+ },
578
+ {
579
+ "epoch": 9.2,
580
+ "grad_norm": 1.7684266567230225,
581
+ "learning_rate": 1.3868913857677904e-05,
582
+ "loss": 0.3576,
583
+ "step": 1640
584
+ },
585
+ {
586
+ "epoch": 9.32,
587
+ "grad_norm": 1.4222275018692017,
588
+ "learning_rate": 1.3794007490636706e-05,
589
+ "loss": 0.3839,
590
+ "step": 1660
591
+ },
592
+ {
593
+ "epoch": 9.43,
594
+ "grad_norm": 2.0622501373291016,
595
+ "learning_rate": 1.3719101123595507e-05,
596
+ "loss": 0.3278,
597
+ "step": 1680
598
+ },
599
+ {
600
+ "epoch": 9.54,
601
+ "grad_norm": 1.639147400856018,
602
+ "learning_rate": 1.3644194756554308e-05,
603
+ "loss": 0.3374,
604
+ "step": 1700
605
+ },
606
+ {
607
+ "epoch": 9.65,
608
+ "grad_norm": 2.093045473098755,
609
+ "learning_rate": 1.356928838951311e-05,
610
+ "loss": 0.3535,
611
+ "step": 1720
612
+ },
613
+ {
614
+ "epoch": 9.76,
615
+ "grad_norm": 1.3492937088012695,
616
+ "learning_rate": 1.3494382022471911e-05,
617
+ "loss": 0.3105,
618
+ "step": 1740
619
+ },
620
+ {
621
+ "epoch": 9.88,
622
+ "grad_norm": 1.585205316543579,
623
+ "learning_rate": 1.3419475655430714e-05,
624
+ "loss": 0.3181,
625
+ "step": 1760
626
+ },
627
+ {
628
+ "epoch": 9.99,
629
+ "grad_norm": 2.8895344734191895,
630
+ "learning_rate": 1.3344569288389515e-05,
631
+ "loss": 0.3473,
632
+ "step": 1780
633
+ },
634
+ {
635
+ "epoch": 10.1,
636
+ "grad_norm": 1.7224748134613037,
637
+ "learning_rate": 1.3269662921348317e-05,
638
+ "loss": 0.3524,
639
+ "step": 1800
640
+ },
641
+ {
642
+ "epoch": 10.21,
643
+ "grad_norm": 2.1029868125915527,
644
+ "learning_rate": 1.3194756554307118e-05,
645
+ "loss": 0.3408,
646
+ "step": 1820
647
+ },
648
+ {
649
+ "epoch": 10.33,
650
+ "grad_norm": 2.434016227722168,
651
+ "learning_rate": 1.311985018726592e-05,
652
+ "loss": 0.3266,
653
+ "step": 1840
654
+ },
655
+ {
656
+ "epoch": 10.44,
657
+ "grad_norm": 1.953553318977356,
658
+ "learning_rate": 1.304494382022472e-05,
659
+ "loss": 0.2844,
660
+ "step": 1860
661
+ },
662
+ {
663
+ "epoch": 10.55,
664
+ "grad_norm": 2.5946218967437744,
665
+ "learning_rate": 1.2970037453183522e-05,
666
+ "loss": 0.3225,
667
+ "step": 1880
668
+ },
669
+ {
670
+ "epoch": 10.66,
671
+ "grad_norm": 2.5305733680725098,
672
+ "learning_rate": 1.2895131086142323e-05,
673
+ "loss": 0.3183,
674
+ "step": 1900
675
+ },
676
+ {
677
+ "epoch": 10.78,
678
+ "grad_norm": 3.56726336479187,
679
+ "learning_rate": 1.2820224719101125e-05,
680
+ "loss": 0.2944,
681
+ "step": 1920
682
+ },
683
+ {
684
+ "epoch": 10.89,
685
+ "grad_norm": 1.9687740802764893,
686
+ "learning_rate": 1.2745318352059926e-05,
687
+ "loss": 0.3411,
688
+ "step": 1940
689
+ },
690
+ {
691
+ "epoch": 11.0,
692
+ "grad_norm": 1.6027730703353882,
693
+ "learning_rate": 1.2670411985018727e-05,
694
+ "loss": 0.2949,
695
+ "step": 1960
696
+ },
697
+ {
698
+ "epoch": 11.11,
699
+ "grad_norm": 1.8739397525787354,
700
+ "learning_rate": 1.2595505617977529e-05,
701
+ "loss": 0.2716,
702
+ "step": 1980
703
+ },
704
+ {
705
+ "epoch": 11.22,
706
+ "grad_norm": 1.6741198301315308,
707
+ "learning_rate": 1.2520599250936332e-05,
708
+ "loss": 0.3334,
709
+ "step": 2000
710
+ },
711
+ {
712
+ "epoch": 11.34,
713
+ "grad_norm": 1.950945496559143,
714
+ "learning_rate": 1.2445692883895133e-05,
715
+ "loss": 0.3291,
716
+ "step": 2020
717
+ },
718
+ {
719
+ "epoch": 11.45,
720
+ "grad_norm": 1.9362170696258545,
721
+ "learning_rate": 1.2370786516853935e-05,
722
+ "loss": 0.2716,
723
+ "step": 2040
724
+ },
725
+ {
726
+ "epoch": 11.56,
727
+ "grad_norm": 1.6201746463775635,
728
+ "learning_rate": 1.2295880149812736e-05,
729
+ "loss": 0.2893,
730
+ "step": 2060
731
+ },
732
+ {
733
+ "epoch": 11.67,
734
+ "grad_norm": 3.488088607788086,
735
+ "learning_rate": 1.2220973782771537e-05,
736
+ "loss": 0.3239,
737
+ "step": 2080
738
+ },
739
+ {
740
+ "epoch": 11.79,
741
+ "grad_norm": 2.4608683586120605,
742
+ "learning_rate": 1.2146067415730339e-05,
743
+ "loss": 0.271,
744
+ "step": 2100
745
+ },
746
+ {
747
+ "epoch": 11.9,
748
+ "grad_norm": 1.5321098566055298,
749
+ "learning_rate": 1.207116104868914e-05,
750
+ "loss": 0.2876,
751
+ "step": 2120
752
+ },
753
+ {
754
+ "epoch": 12.01,
755
+ "grad_norm": 1.8334771394729614,
756
+ "learning_rate": 1.1996254681647941e-05,
757
+ "loss": 0.3066,
758
+ "step": 2140
759
+ },
760
+ {
761
+ "epoch": 12.12,
762
+ "grad_norm": 1.9506254196166992,
763
+ "learning_rate": 1.1921348314606743e-05,
764
+ "loss": 0.3023,
765
+ "step": 2160
766
+ },
767
+ {
768
+ "epoch": 12.23,
769
+ "grad_norm": 2.9073598384857178,
770
+ "learning_rate": 1.1846441947565544e-05,
771
+ "loss": 0.3152,
772
+ "step": 2180
773
+ },
774
+ {
775
+ "epoch": 12.35,
776
+ "grad_norm": 1.6023261547088623,
777
+ "learning_rate": 1.1771535580524345e-05,
778
+ "loss": 0.248,
779
+ "step": 2200
780
+ },
781
+ {
782
+ "epoch": 12.46,
783
+ "grad_norm": 1.7954633235931396,
784
+ "learning_rate": 1.1696629213483147e-05,
785
+ "loss": 0.2666,
786
+ "step": 2220
787
+ },
788
+ {
789
+ "epoch": 12.57,
790
+ "grad_norm": 2.0331828594207764,
791
+ "learning_rate": 1.162172284644195e-05,
792
+ "loss": 0.2878,
793
+ "step": 2240
794
+ },
795
+ {
796
+ "epoch": 12.68,
797
+ "grad_norm": 1.656420350074768,
798
+ "learning_rate": 1.1546816479400751e-05,
799
+ "loss": 0.2805,
800
+ "step": 2260
801
+ },
802
+ {
803
+ "epoch": 12.8,
804
+ "grad_norm": 1.5245873928070068,
805
+ "learning_rate": 1.1471910112359552e-05,
806
+ "loss": 0.2792,
807
+ "step": 2280
808
+ },
809
+ {
810
+ "epoch": 12.91,
811
+ "grad_norm": 2.6713974475860596,
812
+ "learning_rate": 1.1397003745318354e-05,
813
+ "loss": 0.2841,
814
+ "step": 2300
815
+ },
816
+ {
817
+ "epoch": 13.02,
818
+ "grad_norm": 1.268479347229004,
819
+ "learning_rate": 1.1322097378277155e-05,
820
+ "loss": 0.2708,
821
+ "step": 2320
822
+ },
823
+ {
824
+ "epoch": 13.13,
825
+ "grad_norm": 2.2990434169769287,
826
+ "learning_rate": 1.1247191011235956e-05,
827
+ "loss": 0.2649,
828
+ "step": 2340
829
+ },
830
+ {
831
+ "epoch": 13.24,
832
+ "grad_norm": 2.351956367492676,
833
+ "learning_rate": 1.1172284644194758e-05,
834
+ "loss": 0.281,
835
+ "step": 2360
836
+ },
837
+ {
838
+ "epoch": 13.36,
839
+ "grad_norm": 1.796783208847046,
840
+ "learning_rate": 1.1097378277153559e-05,
841
+ "loss": 0.2725,
842
+ "step": 2380
843
+ },
844
+ {
845
+ "epoch": 13.47,
846
+ "grad_norm": 1.7035847902297974,
847
+ "learning_rate": 1.102247191011236e-05,
848
+ "loss": 0.2799,
849
+ "step": 2400
850
+ },
851
+ {
852
+ "epoch": 13.58,
853
+ "grad_norm": 2.0395431518554688,
854
+ "learning_rate": 1.0947565543071162e-05,
855
+ "loss": 0.239,
856
+ "step": 2420
857
+ },
858
+ {
859
+ "epoch": 13.69,
860
+ "grad_norm": 1.8008232116699219,
861
+ "learning_rate": 1.0872659176029963e-05,
862
+ "loss": 0.2553,
863
+ "step": 2440
864
+ },
865
+ {
866
+ "epoch": 13.81,
867
+ "grad_norm": 2.0559043884277344,
868
+ "learning_rate": 1.0797752808988765e-05,
869
+ "loss": 0.2464,
870
+ "step": 2460
871
+ },
872
+ {
873
+ "epoch": 13.92,
874
+ "grad_norm": 1.8673292398452759,
875
+ "learning_rate": 1.0722846441947568e-05,
876
+ "loss": 0.2699,
877
+ "step": 2480
878
+ },
879
+ {
880
+ "epoch": 14.03,
881
+ "grad_norm": 1.6819398403167725,
882
+ "learning_rate": 1.0647940074906369e-05,
883
+ "loss": 0.2566,
884
+ "step": 2500
885
+ },
886
+ {
887
+ "epoch": 14.14,
888
+ "grad_norm": 1.9703686237335205,
889
+ "learning_rate": 1.057303370786517e-05,
890
+ "loss": 0.2807,
891
+ "step": 2520
892
+ },
893
+ {
894
+ "epoch": 14.25,
895
+ "grad_norm": 2.028834819793701,
896
+ "learning_rate": 1.0498127340823972e-05,
897
+ "loss": 0.2392,
898
+ "step": 2540
899
+ },
900
+ {
901
+ "epoch": 14.37,
902
+ "grad_norm": 2.2455177307128906,
903
+ "learning_rate": 1.0423220973782773e-05,
904
+ "loss": 0.247,
905
+ "step": 2560
906
+ },
907
+ {
908
+ "epoch": 14.48,
909
+ "grad_norm": 1.8078291416168213,
910
+ "learning_rate": 1.0348314606741574e-05,
911
+ "loss": 0.2552,
912
+ "step": 2580
913
+ },
914
+ {
915
+ "epoch": 14.59,
916
+ "grad_norm": 2.166729211807251,
917
+ "learning_rate": 1.0273408239700376e-05,
918
+ "loss": 0.2466,
919
+ "step": 2600
920
+ },
921
+ {
922
+ "epoch": 14.7,
923
+ "grad_norm": 2.710556745529175,
924
+ "learning_rate": 1.0198501872659177e-05,
925
+ "loss": 0.2506,
926
+ "step": 2620
927
+ },
928
+ {
929
+ "epoch": 14.82,
930
+ "grad_norm": 2.1344659328460693,
931
+ "learning_rate": 1.0123595505617978e-05,
932
+ "loss": 0.2388,
933
+ "step": 2640
934
+ },
935
+ {
936
+ "epoch": 14.93,
937
+ "grad_norm": 1.595842719078064,
938
+ "learning_rate": 1.004868913857678e-05,
939
+ "loss": 0.2553,
940
+ "step": 2660
941
+ },
942
+ {
943
+ "epoch": 15.04,
944
+ "grad_norm": 1.5458731651306152,
945
+ "learning_rate": 9.973782771535581e-06,
946
+ "loss": 0.2478,
947
+ "step": 2680
948
+ },
949
+ {
950
+ "epoch": 15.15,
951
+ "grad_norm": 1.9514356851577759,
952
+ "learning_rate": 9.898876404494382e-06,
953
+ "loss": 0.234,
954
+ "step": 2700
955
+ },
956
+ {
957
+ "epoch": 15.26,
958
+ "grad_norm": 2.1551694869995117,
959
+ "learning_rate": 9.823970037453184e-06,
960
+ "loss": 0.251,
961
+ "step": 2720
962
+ },
963
+ {
964
+ "epoch": 15.38,
965
+ "grad_norm": 2.08258318901062,
966
+ "learning_rate": 9.749063670411985e-06,
967
+ "loss": 0.2511,
968
+ "step": 2740
969
+ },
970
+ {
971
+ "epoch": 15.49,
972
+ "grad_norm": 1.581690788269043,
973
+ "learning_rate": 9.674157303370786e-06,
974
+ "loss": 0.2185,
975
+ "step": 2760
976
+ },
977
+ {
978
+ "epoch": 15.6,
979
+ "grad_norm": 2.2121975421905518,
980
+ "learning_rate": 9.599250936329588e-06,
981
+ "loss": 0.2161,
982
+ "step": 2780
983
+ },
984
+ {
985
+ "epoch": 15.71,
986
+ "grad_norm": 1.5077215433120728,
987
+ "learning_rate": 9.52434456928839e-06,
988
+ "loss": 0.2308,
989
+ "step": 2800
990
+ },
991
+ {
992
+ "epoch": 15.83,
993
+ "grad_norm": 2.57951021194458,
994
+ "learning_rate": 9.449438202247192e-06,
995
+ "loss": 0.2299,
996
+ "step": 2820
997
+ },
998
+ {
999
+ "epoch": 15.94,
1000
+ "grad_norm": 1.6634414196014404,
1001
+ "learning_rate": 9.374531835205993e-06,
1002
+ "loss": 0.2576,
1003
+ "step": 2840
1004
+ },
1005
+ {
1006
+ "epoch": 16.05,
1007
+ "grad_norm": 1.9692113399505615,
1008
+ "learning_rate": 9.299625468164795e-06,
1009
+ "loss": 0.2395,
1010
+ "step": 2860
1011
+ },
1012
+ {
1013
+ "epoch": 16.16,
1014
+ "grad_norm": 1.9327415227890015,
1015
+ "learning_rate": 9.224719101123596e-06,
1016
+ "loss": 0.241,
1017
+ "step": 2880
1018
+ },
1019
+ {
1020
+ "epoch": 16.27,
1021
+ "grad_norm": 1.7675727605819702,
1022
+ "learning_rate": 9.149812734082398e-06,
1023
+ "loss": 0.2201,
1024
+ "step": 2900
1025
+ },
1026
+ {
1027
+ "epoch": 16.39,
1028
+ "grad_norm": 1.9511345624923706,
1029
+ "learning_rate": 9.074906367041199e-06,
1030
+ "loss": 0.2171,
1031
+ "step": 2920
1032
+ },
1033
+ {
1034
+ "epoch": 16.5,
1035
+ "grad_norm": 1.7937383651733398,
1036
+ "learning_rate": 9e-06,
1037
+ "loss": 0.2286,
1038
+ "step": 2940
1039
+ },
1040
+ {
1041
+ "epoch": 16.61,
1042
+ "grad_norm": 1.79076087474823,
1043
+ "learning_rate": 8.925093632958802e-06,
1044
+ "loss": 0.2479,
1045
+ "step": 2960
1046
+ },
1047
+ {
1048
+ "epoch": 16.72,
1049
+ "grad_norm": 2.4045145511627197,
1050
+ "learning_rate": 8.850187265917603e-06,
1051
+ "loss": 0.2153,
1052
+ "step": 2980
1053
+ },
1054
+ {
1055
+ "epoch": 16.84,
1056
+ "grad_norm": 2.1934499740600586,
1057
+ "learning_rate": 8.775280898876404e-06,
1058
+ "loss": 0.2361,
1059
+ "step": 3000
1060
+ },
1061
+ {
1062
+ "epoch": 16.95,
1063
+ "grad_norm": 1.923170804977417,
1064
+ "learning_rate": 8.700374531835206e-06,
1065
+ "loss": 0.2146,
1066
+ "step": 3020
1067
+ },
1068
+ {
1069
+ "epoch": 17.06,
1070
+ "grad_norm": 2.1610753536224365,
1071
+ "learning_rate": 8.625468164794009e-06,
1072
+ "loss": 0.2281,
1073
+ "step": 3040
1074
+ },
1075
+ {
1076
+ "epoch": 17.17,
1077
+ "grad_norm": 2.1105706691741943,
1078
+ "learning_rate": 8.55056179775281e-06,
1079
+ "loss": 0.2403,
1080
+ "step": 3060
1081
+ },
1082
+ {
1083
+ "epoch": 17.29,
1084
+ "grad_norm": 1.979177474975586,
1085
+ "learning_rate": 8.475655430711611e-06,
1086
+ "loss": 0.1734,
1087
+ "step": 3080
1088
+ },
1089
+ {
1090
+ "epoch": 17.4,
1091
+ "grad_norm": 2.040055274963379,
1092
+ "learning_rate": 8.400749063670413e-06,
1093
+ "loss": 0.2393,
1094
+ "step": 3100
1095
+ },
1096
+ {
1097
+ "epoch": 17.51,
1098
+ "grad_norm": 1.8687106370925903,
1099
+ "learning_rate": 8.325842696629214e-06,
1100
+ "loss": 0.2346,
1101
+ "step": 3120
1102
+ },
1103
+ {
1104
+ "epoch": 17.62,
1105
+ "grad_norm": 1.7447230815887451,
1106
+ "learning_rate": 8.250936329588015e-06,
1107
+ "loss": 0.2279,
1108
+ "step": 3140
1109
+ },
1110
+ {
1111
+ "epoch": 17.73,
1112
+ "grad_norm": 2.9035825729370117,
1113
+ "learning_rate": 8.176029962546818e-06,
1114
+ "loss": 0.2049,
1115
+ "step": 3160
1116
+ },
1117
+ {
1118
+ "epoch": 17.85,
1119
+ "grad_norm": 2.1024608612060547,
1120
+ "learning_rate": 8.101123595505618e-06,
1121
+ "loss": 0.1962,
1122
+ "step": 3180
1123
+ },
1124
+ {
1125
+ "epoch": 17.96,
1126
+ "grad_norm": 2.7913131713867188,
1127
+ "learning_rate": 8.02621722846442e-06,
1128
+ "loss": 0.2081,
1129
+ "step": 3200
1130
+ },
1131
+ {
1132
+ "epoch": 18.07,
1133
+ "grad_norm": 2.0668814182281494,
1134
+ "learning_rate": 7.95131086142322e-06,
1135
+ "loss": 0.2304,
1136
+ "step": 3220
1137
+ },
1138
+ {
1139
+ "epoch": 18.18,
1140
+ "grad_norm": 1.7872204780578613,
1141
+ "learning_rate": 7.876404494382022e-06,
1142
+ "loss": 0.1804,
1143
+ "step": 3240
1144
+ },
1145
+ {
1146
+ "epoch": 18.3,
1147
+ "grad_norm": 2.0718905925750732,
1148
+ "learning_rate": 7.801498127340823e-06,
1149
+ "loss": 0.2232,
1150
+ "step": 3260
1151
+ },
1152
+ {
1153
+ "epoch": 18.41,
1154
+ "grad_norm": 3.835952043533325,
1155
+ "learning_rate": 7.726591760299626e-06,
1156
+ "loss": 0.2171,
1157
+ "step": 3280
1158
+ },
1159
+ {
1160
+ "epoch": 18.52,
1161
+ "grad_norm": 1.5925731658935547,
1162
+ "learning_rate": 7.651685393258428e-06,
1163
+ "loss": 0.1999,
1164
+ "step": 3300
1165
+ },
1166
+ {
1167
+ "epoch": 18.63,
1168
+ "grad_norm": 2.434159994125366,
1169
+ "learning_rate": 7.576779026217229e-06,
1170
+ "loss": 0.1876,
1171
+ "step": 3320
1172
+ },
1173
+ {
1174
+ "epoch": 18.74,
1175
+ "grad_norm": 2.3486499786376953,
1176
+ "learning_rate": 7.5018726591760305e-06,
1177
+ "loss": 0.21,
1178
+ "step": 3340
1179
+ },
1180
+ {
1181
+ "epoch": 18.86,
1182
+ "grad_norm": 1.4824186563491821,
1183
+ "learning_rate": 7.426966292134832e-06,
1184
+ "loss": 0.2239,
1185
+ "step": 3360
1186
+ },
1187
+ {
1188
+ "epoch": 18.97,
1189
+ "grad_norm": 2.062422275543213,
1190
+ "learning_rate": 7.352059925093633e-06,
1191
+ "loss": 0.22,
1192
+ "step": 3380
1193
+ },
1194
+ {
1195
+ "epoch": 19.08,
1196
+ "grad_norm": 2.0563416481018066,
1197
+ "learning_rate": 7.277153558052435e-06,
1198
+ "loss": 0.1945,
1199
+ "step": 3400
1200
+ },
1201
+ {
1202
+ "epoch": 19.19,
1203
+ "grad_norm": 1.6936135292053223,
1204
+ "learning_rate": 7.202247191011237e-06,
1205
+ "loss": 0.217,
1206
+ "step": 3420
1207
+ },
1208
+ {
1209
+ "epoch": 19.31,
1210
+ "grad_norm": 1.9931917190551758,
1211
+ "learning_rate": 7.127340823970038e-06,
1212
+ "loss": 0.2127,
1213
+ "step": 3440
1214
+ },
1215
+ {
1216
+ "epoch": 19.42,
1217
+ "grad_norm": 1.5989198684692383,
1218
+ "learning_rate": 7.0524344569288395e-06,
1219
+ "loss": 0.1849,
1220
+ "step": 3460
1221
+ },
1222
+ {
1223
+ "epoch": 19.53,
1224
+ "grad_norm": 2.0073723793029785,
1225
+ "learning_rate": 6.977528089887641e-06,
1226
+ "loss": 0.1805,
1227
+ "step": 3480
1228
+ },
1229
+ {
1230
+ "epoch": 19.64,
1231
+ "grad_norm": 1.9756735563278198,
1232
+ "learning_rate": 6.902621722846442e-06,
1233
+ "loss": 0.1963,
1234
+ "step": 3500
1235
+ }
1236
+ ],
1237
+ "logging_steps": 20,
1238
+ "max_steps": 5340,
1239
+ "num_input_tokens_seen": 0,
1240
+ "num_train_epochs": 30,
1241
+ "save_steps": 500,
1242
+ "total_flos": 9.0969472548864e+18,
1243
+ "train_batch_size": 1,
1244
+ "trial_name": null,
1245
+ "trial_params": null
1246
+ }