File size: 3,395 Bytes
e952551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: apache-2.0
base_model: CAMeL-Lab/bert-base-arabic-camelbert-ca
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: POEMS-CAMELBERT-CA-RUN4-20-fullData
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# POEMS-CAMELBERT-CA-RUN4-20-fullData

This model is a fine-tuned version of [CAMeL-Lab/bert-base-arabic-camelbert-ca](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-ca) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1172
- Accuracy: 0.6210
- F1: 0.6210
- Precision: 0.6210
- Recall: 0.6210

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 1.1804        | 1.0   | 568   | 1.1103          | 0.5066   | 0.5066 | 0.5066    | 0.5066 |
| 0.9771        | 2.0   | 1136  | 0.9937          | 0.5847   | 0.5847 | 0.5847    | 0.5847 |
| 0.8057        | 3.0   | 1704  | 1.0751          | 0.5882   | 0.5882 | 0.5882    | 0.5882 |
| 0.6404        | 4.0   | 2272  | 1.1029          | 0.6011   | 0.6011 | 0.6011    | 0.6011 |
| 0.4956        | 5.0   | 2840  | 1.1222          | 0.6064   | 0.6064 | 0.6064    | 0.6064 |
| 0.3742        | 6.0   | 3408  | 1.2714          | 0.6077   | 0.6077 | 0.6077    | 0.6077 |
| 0.2881        | 7.0   | 3976  | 1.5337          | 0.5931   | 0.5931 | 0.5931    | 0.5931 |
| 0.2153        | 8.0   | 4544  | 1.6150          | 0.5984   | 0.5984 | 0.5984    | 0.5984 |
| 0.1663        | 9.0   | 5112  | 1.7246          | 0.6037   | 0.6037 | 0.6037    | 0.6037 |
| 0.1266        | 10.0  | 5680  | 2.0767          | 0.5984   | 0.5984 | 0.5984    | 0.5984 |
| 0.1064        | 11.0  | 6248  | 2.1690          | 0.6161   | 0.6161 | 0.6161    | 0.6161 |
| 0.0895        | 12.0  | 6816  | 2.4732          | 0.6068   | 0.6068 | 0.6068    | 0.6068 |
| 0.0794        | 13.0  | 7384  | 2.4153          | 0.6095   | 0.6095 | 0.6095    | 0.6095 |
| 0.0555        | 14.0  | 7952  | 2.8754          | 0.6037   | 0.6037 | 0.6037    | 0.6037 |
| 0.0502        | 15.0  | 8520  | 2.8673          | 0.6121   | 0.6121 | 0.6121    | 0.6121 |
| 0.0383        | 16.0  | 9088  | 2.9805          | 0.6139   | 0.6139 | 0.6139    | 0.6139 |
| 0.0329        | 17.0  | 9656  | 3.0402          | 0.6188   | 0.6188 | 0.6188    | 0.6188 |
| 0.0237        | 18.0  | 10224 | 3.0225          | 0.6263   | 0.6263 | 0.6263    | 0.6263 |
| 0.0173        | 19.0  | 10792 | 3.0629          | 0.6206   | 0.6206 | 0.6206    | 0.6206 |
| 0.0169        | 20.0  | 11360 | 3.1172          | 0.6210   | 0.6210 | 0.6210    | 0.6210 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2