File size: 3,842 Bytes
3e19220
 
 
 
 
 
 
 
 
2109dcd
3e19220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
base_model: CAMeL-Lab/bert-base-arabic-camelbert-ca
model-index:
- name: POEMS-CAMELBERT-CA-RUN4-25
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# POEMS-CAMELBERT-CA-RUN4-25

This model is a fine-tuned version of [CAMeL-Lab/bert-base-arabic-camelbert-ca](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-ca) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7725
- Accuracy: 0.5731
- F1: 0.5731
- Precision: 0.5731
- Recall: 0.5731

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 1.3427        | 1.0   | 472   | 1.2734          | 0.4056   | 0.4056 | 0.4056    | 0.4056 |
| 1.1941        | 2.0   | 944   | 1.1317          | 0.5129   | 0.5129 | 0.5129    | 0.5129 |
| 1.1178        | 3.0   | 1416  | 1.1461          | 0.5142   | 0.5142 | 0.5142    | 0.5142 |
| 1.0569        | 4.0   | 1888  | 1.0592          | 0.5412   | 0.5412 | 0.5412    | 0.5412 |
| 0.9925        | 5.0   | 2360  | 1.1219          | 0.5426   | 0.5426 | 0.5426    | 0.5426 |
| 0.9375        | 6.0   | 2832  | 1.0840          | 0.5740   | 0.5740 | 0.5740    | 0.5740 |
| 0.8771        | 7.0   | 3304  | 1.1091          | 0.5816   | 0.5816 | 0.5816    | 0.5816 |
| 0.8262        | 8.0   | 3776  | 1.1221          | 0.5851   | 0.5851 | 0.5851    | 0.5851 |
| 0.7871        | 9.0   | 4248  | 1.1499          | 0.5745   | 0.5745 | 0.5745    | 0.5745 |
| 0.7252        | 10.0  | 4720  | 1.3011          | 0.5621   | 0.5621 | 0.5621    | 0.5621 |
| 0.6919        | 11.0  | 5192  | 1.3272          | 0.5802   | 0.5802 | 0.5802    | 0.5802 |
| 0.6427        | 12.0  | 5664  | 1.3928          | 0.5683   | 0.5683 | 0.5683    | 0.5683 |
| 0.6008        | 13.0  | 6136  | 1.4789          | 0.5590   | 0.5590 | 0.5590    | 0.5590 |
| 0.5576        | 14.0  | 6608  | 1.4850          | 0.5638   | 0.5638 | 0.5638    | 0.5638 |
| 0.5267        | 15.0  | 7080  | 1.5124          | 0.5762   | 0.5762 | 0.5762    | 0.5762 |
| 0.4823        | 16.0  | 7552  | 1.3870          | 0.5683   | 0.5683 | 0.5683    | 0.5683 |
| 0.4564        | 17.0  | 8024  | 1.5277          | 0.5785   | 0.5785 | 0.5785    | 0.5785 |
| 0.4217        | 18.0  | 8496  | 1.5805          | 0.5723   | 0.5723 | 0.5723    | 0.5723 |
| 0.3891        | 19.0  | 8968  | 1.5173          | 0.5709   | 0.5709 | 0.5709    | 0.5709 |
| 0.3705        | 20.0  | 9440  | 1.6484          | 0.5807   | 0.5807 | 0.5807    | 0.5807 |
| 0.3419        | 21.0  | 9912  | 1.6999          | 0.5816   | 0.5816 | 0.5816    | 0.5816 |
| 0.321         | 22.0  | 10384 | 1.7024          | 0.5745   | 0.5745 | 0.5745    | 0.5745 |
| 0.3121        | 23.0  | 10856 | 1.7545          | 0.5709   | 0.5709 | 0.5709    | 0.5709 |
| 0.2964        | 24.0  | 11328 | 1.7355          | 0.5767   | 0.5767 | 0.5767    | 0.5767 |
| 0.285         | 25.0  | 11800 | 1.7725          | 0.5731   | 0.5731 | 0.5731    | 0.5731 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2