salohnana2018
commited on
Commit
•
9e524c1
1
Parent(s):
f30b33c
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: CAMeL-Lab/bert-base-arabic-camelbert-ca
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- f1
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
model-index:
|
12 |
+
- name: POEMS-CAMELBERT-CA-RUN4
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# POEMS-CAMELBERT-CA-RUN4
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [CAMeL-Lab/bert-base-arabic-camelbert-ca](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-ca) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 1.1498
|
24 |
+
- Accuracy: 0.5966
|
25 |
+
- F1: 0.5966
|
26 |
+
- Precision: 0.5966
|
27 |
+
- Recall: 0.5966
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 5e-05
|
47 |
+
- train_batch_size: 32
|
48 |
+
- eval_batch_size: 32
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 10
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
58 |
+
| 1.3444 | 1.0 | 472 | 1.2277 | 0.4552 | 0.4552 | 0.4552 | 0.4552 |
|
59 |
+
| 1.1589 | 2.0 | 944 | 1.0866 | 0.5275 | 0.5275 | 0.5275 | 0.5275 |
|
60 |
+
| 1.0829 | 3.0 | 1416 | 1.1405 | 0.5146 | 0.5146 | 0.5146 | 0.5146 |
|
61 |
+
| 1.0 | 4.0 | 1888 | 1.0262 | 0.5643 | 0.5643 | 0.5643 | 0.5643 |
|
62 |
+
| 0.9288 | 5.0 | 2360 | 1.0574 | 0.5762 | 0.5762 | 0.5762 | 0.5762 |
|
63 |
+
| 0.8776 | 6.0 | 2832 | 1.0456 | 0.5838 | 0.5838 | 0.5838 | 0.5838 |
|
64 |
+
| 0.8166 | 7.0 | 3304 | 1.1421 | 0.5745 | 0.5745 | 0.5745 | 0.5745 |
|
65 |
+
| 0.7636 | 8.0 | 3776 | 1.0959 | 0.5931 | 0.5931 | 0.5931 | 0.5931 |
|
66 |
+
| 0.7173 | 9.0 | 4248 | 1.1400 | 0.5851 | 0.5851 | 0.5851 | 0.5851 |
|
67 |
+
| 0.6915 | 10.0 | 4720 | 1.1498 | 0.5966 | 0.5966 | 0.5966 | 0.5966 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.38.2
|
73 |
+
- Pytorch 2.1.0+cu121
|
74 |
+
- Datasets 2.18.0
|
75 |
+
- Tokenizers 0.15.2
|