--- license: other library_name: peft tags: - axolotl - generated_from_trainer base_model: Qwen/Qwen1.5-7B model-index: - name: qwen_1.5_odia_7b results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml # Qwen/Qwen1.5-7B base_model: Qwen/Qwen1.5-7B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer # is_qwen_derived_model: true trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: OdiaGenAIdata/culturax-odia type: completion dataset_prepared_path: val_set_size: 0.05 output_dir: ./lora-out-qwen-7b-odia hub_model_id: sam2ai/qwen_1.5_odia_7b sequence_len: 2048 # supports up to 8192 sample_packing: false pad_to_sequence_len: adapter: qlora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: Qwen-completion-7b-odia wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 1 num_epochs: 10 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# qwen_1.5_odia_7b This model is a fine-tuned version of [Qwen/Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 0.8734 | 0.0 | 1 | nan | | 0.377 | 0.25 | 5463 | nan | | 0.3727 | 0.5 | 10926 | nan | | 0.3894 | 0.75 | 16389 | nan | | 0.3933 | 1.0 | 21852 | nan | | 0.3542 | 1.25 | 27315 | nan | | 0.3567 | 1.5 | 32778 | nan | | 0.3557 | 1.75 | 38241 | nan | | 0.3414 | 2.0 | 43704 | nan | | 0.3261 | 2.25 | 49167 | nan | | 0.3813 | 2.5 | 54630 | nan | | 0.3607 | 2.75 | 60093 | nan | | 0.3348 | 3.0 | 65556 | nan | | 0.3464 | 3.25 | 71019 | nan | | 0.3545 | 3.5 | 76482 | nan | | 0.2719 | 3.75 | 81945 | nan | | 0.3158 | 4.0 | 87408 | nan | | 0.3119 | 4.25 | 92871 | nan | | 0.3311 | 4.5 | 98334 | nan | | 0.3335 | 4.75 | 103797 | nan | | 0.3399 | 5.0 | 109260 | nan | | 0.3247 | 5.25 | 114723 | nan | | 0.3166 | 5.5 | 120186 | nan | | 0.3366 | 5.75 | 125649 | nan | | 0.3478 | 6.0 | 131112 | nan | | 0.2852 | 6.25 | 136575 | nan | | 0.2852 | 6.5 | 142038 | nan | | 0.2601 | 6.75 | 147501 | nan | | 0.2734 | 7.0 | 152964 | nan | | 0.2983 | 7.25 | 158427 | nan | | 0.2068 | 7.5 | 163890 | nan | | 0.2355 | 7.75 | 169353 | nan | | 0.2836 | 8.0 | 174816 | nan | | 0.2263 | 8.25 | 180279 | nan | | 0.2953 | 8.5 | 185742 | nan | | 0.257 | 8.75 | 191205 | nan | | 0.2484 | 9.0 | 196668 | nan | | 0.2477 | 9.25 | 202131 | nan | | 0.2641 | 9.5 | 207594 | nan | | 0.2569 | 9.75 | 213057 | nan | | 0.2846 | 10.0 | 218520 | nan | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.0 - Pytorch 2.0.1+gita61a294 - Datasets 2.16.1 - Tokenizers 0.15.0