---
license: other
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: Qwen/Qwen1.5-7B
model-index:
- name: qwen_1.5_odia_7b
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
# Qwen/Qwen1.5-7B
base_model: Qwen/Qwen1.5-7B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
# is_qwen_derived_model: true
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: OdiaGenAIdata/culturax-odia
type: completion
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lora-out-qwen-7b-odia
hub_model_id: sam2ai/qwen_1.5_odia_7b
sequence_len: 2048 # supports up to 8192
sample_packing: false
pad_to_sequence_len:
adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: Qwen-completion-7b-odia
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 10
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
# qwen_1.5_odia_7b
This model is a fine-tuned version of [Qwen/Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: nan
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.8734 | 0.0 | 1 | nan |
| 0.377 | 0.25 | 5463 | nan |
| 0.3727 | 0.5 | 10926 | nan |
| 0.3894 | 0.75 | 16389 | nan |
| 0.3933 | 1.0 | 21852 | nan |
| 0.3542 | 1.25 | 27315 | nan |
| 0.3567 | 1.5 | 32778 | nan |
| 0.3557 | 1.75 | 38241 | nan |
| 0.3414 | 2.0 | 43704 | nan |
| 0.3261 | 2.25 | 49167 | nan |
| 0.3813 | 2.5 | 54630 | nan |
| 0.3607 | 2.75 | 60093 | nan |
| 0.3348 | 3.0 | 65556 | nan |
| 0.3464 | 3.25 | 71019 | nan |
| 0.3545 | 3.5 | 76482 | nan |
| 0.2719 | 3.75 | 81945 | nan |
| 0.3158 | 4.0 | 87408 | nan |
| 0.3119 | 4.25 | 92871 | nan |
| 0.3311 | 4.5 | 98334 | nan |
| 0.3335 | 4.75 | 103797 | nan |
| 0.3399 | 5.0 | 109260 | nan |
| 0.3247 | 5.25 | 114723 | nan |
| 0.3166 | 5.5 | 120186 | nan |
| 0.3366 | 5.75 | 125649 | nan |
| 0.3478 | 6.0 | 131112 | nan |
| 0.2852 | 6.25 | 136575 | nan |
| 0.2852 | 6.5 | 142038 | nan |
| 0.2601 | 6.75 | 147501 | nan |
| 0.2734 | 7.0 | 152964 | nan |
| 0.2983 | 7.25 | 158427 | nan |
| 0.2068 | 7.5 | 163890 | nan |
| 0.2355 | 7.75 | 169353 | nan |
| 0.2836 | 8.0 | 174816 | nan |
| 0.2263 | 8.25 | 180279 | nan |
| 0.2953 | 8.5 | 185742 | nan |
| 0.257 | 8.75 | 191205 | nan |
| 0.2484 | 9.0 | 196668 | nan |
| 0.2477 | 9.25 | 202131 | nan |
| 0.2641 | 9.5 | 207594 | nan |
| 0.2569 | 9.75 | 213057 | nan |
| 0.2846 | 10.0 | 218520 | nan |
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.0
- Pytorch 2.0.1+gita61a294
- Datasets 2.16.1
- Tokenizers 0.15.0