File size: 2,486 Bytes
4792c89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
license: apache-2.0
base_model: google-t5/t5-small
tags:
- generated_from_trainer
datasets:
- Andyrasika/TweetSumm-tuned
metrics:
- rouge
- f1
- precision
- recall
model-index:
- name: t5-small-Full-TweetSumm-1724699443
  results:
  - task:
      name: Summarization
      type: summarization
    dataset:
      name: Andyrasika/TweetSumm-tuned
      type: Andyrasika/TweetSumm-tuned
    metrics:
    - name: Rouge1
      type: rouge
      value: 0.4576
    - name: F1
      type: f1
      value: 0.8917
    - name: Precision
      type: precision
      value: 0.8901
    - name: Recall
      type: recall
      value: 0.8936
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-Full-TweetSumm-1724699443

This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the Andyrasika/TweetSumm-tuned dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9954
- Rouge1: 0.4576
- Rouge2: 0.2129
- Rougel: 0.3814
- Rougelsum: 0.4246
- Gen Len: 49.4636
- F1: 0.8917
- Precision: 0.8901
- Recall: 0.8936

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:------:|:---------:|:------:|
| 2.3321        | 1.0   | 110  | 2.0722          | 0.462  | 0.2119 | 0.3832 | 0.429     | 49.4818 | 0.8916 | 0.8905    | 0.893  |
| 2.0488        | 2.0   | 220  | 2.0052          | 0.453  | 0.2025 | 0.3721 | 0.4167    | 49.5727 | 0.8912 | 0.8889    | 0.8938 |
| 1.7205        | 3.0   | 330  | 1.9954          | 0.4576 | 0.2129 | 0.3814 | 0.4246    | 49.4636 | 0.8917 | 0.8901    | 0.8936 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1