--- license: mit base_model: distil-whisper/distil-large-v3 tags: - generated_from_trainer datasets: - common_voice_16_1 metrics: - wer model-index: - name: distil-whisper/distil-large-v3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_1 type: common_voice_16_1 config: hi split: test args: hi metrics: - name: Wer type: wer value: 0.3297535347291973 --- # distil-whisper/distil-large-v3 This model is a fine-tuned version of [distil-whisper/distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3) on the common_voice_16_1 dataset. It achieves the following results on the evaluation set: - Loss: 0.6148 - Wer: 0.3298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.125 | 4.5 | 1000 | 0.4658 | 0.4300 | | 0.0412 | 9.01 | 2000 | 0.5247 | 0.3960 | | 0.0077 | 13.51 | 3000 | 0.5476 | 0.3535 | | 0.0007 | 18.02 | 4000 | 0.5731 | 0.3398 | | 0.0001 | 22.52 | 5000 | 0.6148 | 0.3298 | ### Framework versions - Transformers 4.40.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.1