--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: whisper-medium-dv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: dv split: test args: dv metrics: - name: Wer type: wer value: 8.957818965817019 --- # whisper-medium-dv This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2998 - Wer: 8.9578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0349 | 3.58 | 1000 | 0.1622 | 9.9437 | | 0.0046 | 7.17 | 2000 | 0.2288 | 9.5090 | | 0.0007 | 10.75 | 3000 | 0.2820 | 9.0952 | | 0.0 | 14.34 | 4000 | 0.2998 | 8.9578 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1.dev0 - Tokenizers 0.13.3