File size: 1,555 Bytes
b852105 12546ec b852105 12546ec b852105 7010e39 12546ec 7010e39 12546ec 7010e39 12546ec 7010e39 12546ec b852105 12546ec b852105 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
license: creativeml-openrail-m
tags:
- pytorch
- diffusers
- stable-diffusion
- text-to-image
- diffusion-models-class
- dreambooth-hackathon
- animal
widget:
- text: a photo of a zzelda cat in space
---
# DreamBooth model for the zzelda concept trained by Sanderbaduk on dataset of cats.
This is a Stable Diffusion model fine-tuned on the zzelda concept with DreamBooth. It can be used by using the phrase 'zzelda cat' in a prompt.
This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part!
<table style="width:50%">
<tr>
<td>One of the images used to fine-tune on<br>"a photo of zzelda cat on a chair"</td>
<td>One of the images generated by the model<br>"a photo of zzelda cat in space"</td>
</tr>
<tr>
<td>
<img src="http://i.imgur.com/zFOzQtf.jpg" style="height:400px">
</td>
<td>
<img src="http://i.imgur.com/12Nilhg.png" style="height:400px">
</td>
</tr>
</table>
## Description
This is a Stable Diffusion model fine-tuned on images of my mum's cat Zelda for the animal theme.
To experiment a bit, I used a custom prompt for each image based on the file name.
This was trained on CPU after encountering issues with CUDA, taking around 2 hours on 32 cores.
It generates some red cats, but
## Usage
```python
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained('Sanderbaduk/zelda-the-cat')
image = pipeline().images[0]
image
```
|