File size: 4,799 Bytes
b7b782c cf270b4 b7b782c cf270b4 902f4e6 cf270b4 a59cce7 cf270b4 a59cce7 cf270b4 a59cce7 cf270b4 a59cce7 cf270b4 a59cce7 cf270b4 a59cce7 cf270b4 a59cce7 cf270b4 a59cce7 cf270b4 a59cce7 cf270b4 a59cce7 cf270b4 a59cce7 cf270b4 a59cce7 cf270b4 a59cce7 cf270b4 b7b782c 902f4e6 b7b782c 902f4e6 b7b782c 902f4e6 b7b782c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: t5-small-finetuned-samsum-en
results:
- task:
type: text2text-generation
name: Sequence-to-sequence Language Modeling
dataset:
name: samsum
type: samsum
args: samsum
metrics:
- type: rouge
value: 44.3313
name: Rouge1
- task:
type: summarization
name: Summarization
dataset:
name: samsum
type: samsum
config: samsum
split: test
metrics:
- type: rouge
value: 40.0386
name: ROUGE-1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmRlMjZmNjQyYWQ5MjcyM2M2MzUwMjk5ZTQxOTg3NzY1NjAxY2FkNzY5OGI2YjcxYTg1Y2M1Y2M2NDM2YmI1YSIsInZlcnNpb24iOjF9.xxrRepLefbFAUWkOJwOenMuwQ8g4i2QkEUgB_d1YsAv2aRRQd0vPfiGCMltGEtCxqrgQ6vmndOlkXIJhCPV9CQ
- type: rouge
value: 15.8501
name: ROUGE-2
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjQ4ZDQ0OTM2ZjI3NGExYWRjNWNjNTYwNjA0YWE0NWVkODJmODAwZTYzZjU3NzVhNjRiM2Y3ZDFhYjIwMTcxOSIsInZlcnNpb24iOjF9.UnymHQUy2s5P8yNUkFRhj6drPkKviYUNN2yB9E1KvYssNpRWnUbD5X_cVfYGWXVLPrtYe9dc-f7vSvm2Z1ZtDA
- type: rouge
value: 31.8084
name: ROUGE-L
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTllNjQ2MGRjMTJkNmI3OWI5MTNmNWJjNmUyMTU1ZjkxYzkyNDg4MWI2MGU1NWI5NmZhMTFjNjE4ZTI5M2MyMiIsInZlcnNpb24iOjF9.rVGbelDJoVmcTD6OOQ7O8C_4LhrMMuYUniY_hAmmgZ8kU_wgtApwi6Ms1sgzqtvbF0cDHaLxejE9XPZ8ZDZMAA
- type: rouge
value: 36.0888
name: ROUGE-LSUM
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWQyNmZmMjFkZTY2MDhjZmIzZDBkM2ZkYzUxZTcxMTcwMDVjMDdiMzljMjU2NDA5OTUxZTEwYzQwZjg2NDJmMiIsInZlcnNpb24iOjF9.ZEBUBcPLCURLXPN5upXDHaIVu_ilUEyvZd81nnppZCWEuULyp30jcpmzLFb91v0WwRHMDPIjPl0hlckzq71ICw
- type: loss
value: 2.1917073726654053
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjA0MDk3MWZiMDgxMDlkZDFjY2UwODM0MTk4MmY2NzlkNThmYTA0ODk5MzgyZWQwYjVlZGFlZmJmNjA2NDA2ZSIsInZlcnNpb24iOjF9.Wc_5Wpf_Wa0Xm0A7w2EYnF1_eQ-2QU_v6eXr8SHveBszH5YhZBW6GS3yKslVVKKIaAGSGKtLIHzMW1H-NqqNDA
- type: gen_len
value: 18.1074
name: gen_len
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDFlMmU0MTAyMDM5M2UyZDA2N2U4MjQ3MjhjYjdkOGY1ODdlNDY1NWY3NTQ3MzBhOWE3OTk2ZGU3ZTYyNjU1ZCIsInZlcnNpb24iOjF9.Ob1cLE1iYpV00ae1RYRIUNZz7V-x8IYTcU6ofR5gf07PdRqfiOgZtpV0tN3yM0_nyAJI71J8fnC6yWq10Y0HBw
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-samsum-en
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9335
- Rouge1: 44.3313
- Rouge2: 20.71
- Rougel: 37.221
- Rougelsum: 40.9603
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 1.4912 | 1.0 | 300 | 1.9043 | 44.1517 | 20.0186 | 36.6053 | 40.5164 |
| 1.5055 | 2.0 | 600 | 1.8912 | 44.1473 | 20.4456 | 37.069 | 40.6714 |
| 1.4852 | 3.0 | 900 | 1.8986 | 44.7536 | 20.8646 | 37.525 | 41.2189 |
| 1.4539 | 4.0 | 1200 | 1.9136 | 44.2144 | 20.3446 | 37.1088 | 40.7581 |
| 1.4262 | 5.0 | 1500 | 1.9215 | 44.2656 | 20.6044 | 37.3267 | 40.9469 |
| 1.4118 | 6.0 | 1800 | 1.9247 | 43.8793 | 20.4663 | 37.0614 | 40.6065 |
| 1.3987 | 7.0 | 2100 | 1.9256 | 43.9981 | 20.2703 | 36.7856 | 40.6354 |
| 1.3822 | 8.0 | 2400 | 1.9316 | 43.9732 | 20.4559 | 36.8039 | 40.5784 |
| 1.3773 | 9.0 | 2700 | 1.9314 | 44.3075 | 20.5435 | 37.0457 | 40.832 |
| 1.3795 | 10.0 | 3000 | 1.9335 | 44.3313 | 20.71 | 37.221 | 40.9603 |
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1
|