--- tags: - merge - mergekit - kaist-ai/mistral-orpo-beta - NousResearch/Hermes-2-Pro-Mistral-7B base_model: - kaist-ai/mistral-orpo-beta - NousResearch/Hermes-2-Pro-Mistral-7B --- ![](https://raw.githubusercontent.com/saucam/models/main/orpomis-prime.png) # Orpomis-Prime-7B-dare Orpomis-Prime-7B-dare is a merge of the following models using [Mergekit](https://github.com/arcee-ai/mergekit): * [kaist-ai/mistral-orpo-beta](https://huggingface.co/kaist-ai/mistral-orpo-beta) * [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B) ## 🧩 Configuration ```yamlname: Orpomis-Prime-7B-dare models: - model: kaist-ai/mistral-orpo-beta parameters: density: 0.5 weight: 0.6 # No parameters necessary for base model - model: NousResearch/Hermes-2-Pro-Mistral-7B parameters: density: 0.5 weight: 0.4 merge_method: dare_ties base_model: kaist-ai/mistral-orpo-beta parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "saucam/Orpomis-Prime-7B-dare" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```