--- base_model: black-forest-labs/FLUX.1-dev library_name: diffusers license: other tags: - text-to-image - diffusers-training - diffusers - lora - flux - flux-diffusers - template:sd-lora instance_prompt: a puppy, yarn art style widget: [] --- # Flux DreamBooth LoRA - sayakpaul/yarn_art_lora_flux_nf4 ## Model description These are sayakpaul/yarn_art_lora_flux_nf4 DreamBooth LoRA weights for black-forest-labs/FLUX.1-dev. The weights were trained using [DreamBooth](https://dreambooth.github.io/) with the [Flux diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_flux.md). Was LoRA for the text encoder enabled? False. Trained with quantization: Yes. Quantization config: ```json BitsAndBytesConfig { "_load_in_4bit": true, "_load_in_8bit": false, "bnb_4bit_compute_dtype": "bfloat16", "bnb_4bit_quant_storage": "uint8", "bnb_4bit_quant_type": "nf4", "bnb_4bit_use_double_quant": false, "llm_int8_enable_fp32_cpu_offload": false, "llm_int8_has_fp16_weight": false, "llm_int8_skip_modules": null, "llm_int8_threshold": 6.0, "load_in_4bit": true, "load_in_8bit": false, "quant_method": "bitsandbytes" } ``` To know more on how this was trained, follow: https://gist.github.com/sayakpaul/05afd428bc089b47af7c016e42004527. ## Trigger words You should use `a puppy, yarn art style` to trigger the image generation. ## Download model [Download the *.safetensors LoRA](sayakpaul/yarn_art_lora_flux_nf4/tree/main) in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image, FluxTransformer2DModel, BitsAndBytesConfig import torch ckpt_id = "black-forest-labs/FLUX.1-dev" bnb_4bit_compute_dtype = torch.bfloat16 nf4_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=bnb_4bit_compute_dtype, ) transformer = FluxTransformer2DModel.from_pretrained( ckpt_id, subfolder="transformer", quantization_config=nf4_config, torch_dtype=bnb_4bit_compute_dtype, ) pipeline = AutoPipelineForText2Image.from_pretrained( ckpt_id, transformer=transformer, torch_dtype=torch.bfloat16 ) pipeline.load_lora_weights("yarn_art_lora_flux_nf4", weight_name="pytorch_lora_weights.safetensors") pipeline.fuse_lora() pipeline.unload_lora_weights() pipeline.enable_model_cpu_offload() image = pipeline("a puppy in a pond, yarn art style", guidance_scale=3.5, height=768).images[0] image.save("yarn.png") ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## License Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md). ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]