sayanbanerjee32
commited on
Commit
•
11c24e8
1
Parent(s):
8636816
Upload folder using huggingface_hub
Browse files- model_gpt2.py +242 -0
- saved_model/ckpt.pt +1 -1
model_gpt2.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
import inspect
|
6 |
+
|
7 |
+
#------------------------------------------
|
8 |
+
|
9 |
+
class CausalSelfAttention(nn.Module):
|
10 |
+
def __init__(self, config):
|
11 |
+
super().__init__()
|
12 |
+
# key, query, value projection for al heads but in a batch
|
13 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
14 |
+
# output projection
|
15 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
16 |
+
self.c_proj.NANOGPT_SCALE_INIT = True
|
17 |
+
|
18 |
+
# regularization
|
19 |
+
self.n_head = config.n_head
|
20 |
+
self.n_embd = config.n_embd
|
21 |
+
|
22 |
+
# not really a 'bias', more of a mask, but following a openAI/HF naming
|
23 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
|
24 |
+
.view(1, 1, config.block_size, config.block_size))
|
25 |
+
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
B, T, C = x.size() # batch_size, sequence_length, embedding dimensionality (n_embed)
|
29 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
30 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
31 |
+
# e.g. in GPT-2(124M), n_head = 12, hs = 64, so, nh*hs=C=768 channels in the transformer
|
32 |
+
qkv = self.c_attn(x)
|
33 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
34 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
35 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
36 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
37 |
+
|
38 |
+
# attention (materilizes the large (T,T) matrix for all the queries and keys)
|
39 |
+
# att = (q @ k.transpose(-2, -1)) * (1.0 / torch.sqrt(torch.tensor(k.size(-1))))
|
40 |
+
# att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
|
41 |
+
# att = F.softmax(att, dim=-1)
|
42 |
+
# y = att @ v # (B, nh, T, T) @ (B, nh, T, hs) -> (B, nh, T, T)
|
43 |
+
# 4 lines above replaced by flash- attention
|
44 |
+
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
|
45 |
+
|
46 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
47 |
+
|
48 |
+
# output projection
|
49 |
+
y = self.c_proj(y)
|
50 |
+
return y
|
51 |
+
|
52 |
+
class MLP(nn.Module):
|
53 |
+
def __init__(self, config):
|
54 |
+
super().__init__()
|
55 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
56 |
+
self.gelu = nn.GELU(approximate='tanh') # historic reason for approximation
|
57 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
58 |
+
self.c_proj.NANOGPT_SCALE_INIT = True
|
59 |
+
|
60 |
+
def forward(self, x):
|
61 |
+
x = self.c_fc(x)
|
62 |
+
x = self.gelu(x)
|
63 |
+
x = self.c_proj(x)
|
64 |
+
return x
|
65 |
+
|
66 |
+
class Block(nn.Module):
|
67 |
+
def __init__(self, config):
|
68 |
+
super().__init__()
|
69 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
70 |
+
self.attn = CausalSelfAttention(config)
|
71 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
72 |
+
self.mlp = MLP(config)
|
73 |
+
|
74 |
+
def forward(self, x):
|
75 |
+
x = x + self.attn(self.ln_1(x))
|
76 |
+
x = x + self.mlp(self.ln_2(x))
|
77 |
+
return x
|
78 |
+
|
79 |
+
@dataclass
|
80 |
+
class GPTConfig:
|
81 |
+
block_size: int = 1024 # max sequence lenghts
|
82 |
+
vocab_size: int = 50257 # number of tokens, 50,000 BPE merges + 256 byte tokens + 1 <|endoftext|>
|
83 |
+
n_layer: int = 12 # number of layers
|
84 |
+
n_head: int = 12 # number of heads
|
85 |
+
n_embd: int = 768 # embedding dim
|
86 |
+
|
87 |
+
class GPT(nn.Module):
|
88 |
+
def __init__(self, config):
|
89 |
+
super().__init__()
|
90 |
+
self.config = config
|
91 |
+
self.transformer = nn.ModuleDict(dict(
|
92 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
93 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
94 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
95 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
96 |
+
))
|
97 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
98 |
+
|
99 |
+
# weight sharing scheme
|
100 |
+
self.transformer.wte.weight = self.lm_head.weight
|
101 |
+
|
102 |
+
# init
|
103 |
+
self.apply(self._init_weights)
|
104 |
+
|
105 |
+
def _init_weights(self, module):
|
106 |
+
|
107 |
+
if isinstance(module, nn.Linear):
|
108 |
+
std = 0.02
|
109 |
+
if hasattr(module, 'NANOGPT_SCALE_INIT'):
|
110 |
+
std = (2 * self.config.n_layer) ** -0.5 # 2 times as each layer has attention and MLP
|
111 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
|
112 |
+
if module.bias is not None:
|
113 |
+
torch.nn.init.zeros_(module.bias)
|
114 |
+
elif isinstance(module, nn.Embedding):
|
115 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) # word embedding will be initialised twice
|
116 |
+
|
117 |
+
def forward(self, idx, target = None):
|
118 |
+
# idx of shape (B, T)
|
119 |
+
B, T = idx.size()
|
120 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
121 |
+
# forward thetoken and position embedding
|
122 |
+
pos = torch.arange(0, T, dtype = torch.long, device=idx.device) # (T)
|
123 |
+
pos_emb = self.transformer.wpe(pos) # (T, C)
|
124 |
+
tok_emb = self.transformer.wte(idx) # (B, T, C)
|
125 |
+
x = tok_emb + pos_emb # (B, T, C)
|
126 |
+
# forward the block for transformer
|
127 |
+
for block in self.transformer.h:
|
128 |
+
x = block(x)
|
129 |
+
# forward the final layer nor and classifier
|
130 |
+
x = self.transformer.ln_f(x)
|
131 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
132 |
+
# compute the loss
|
133 |
+
loss = None
|
134 |
+
if target is not None:
|
135 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
|
136 |
+
return logits, loss
|
137 |
+
|
138 |
+
@classmethod
|
139 |
+
def from_pretrained(cls, model_type):
|
140 |
+
""" Loads pretrained GPT2 model from HuggingFace """
|
141 |
+
assert model_type in {"gpt2", "gpt2-medium", "gpt2-large", "gpt2-xl"}
|
142 |
+
from transformers import GPT2LMHeadModel
|
143 |
+
print(f"Loading {model_type} model...")
|
144 |
+
|
145 |
+
config_args = {
|
146 |
+
"gpt2": dict(n_layer = 12, n_head = 12, n_embd = 768), # 124M
|
147 |
+
"gpt2-medium": dict(n_layer = 24, n_head = 16, n_embd = 1024), # 350M
|
148 |
+
"gpt2-large": dict(n_layer = 36, n_head = 20, n_embd = 1280), # 774M
|
149 |
+
"gpt2-xl": dict(n_layer = 48, n_head = 25, n_embd = 1600), # 1558M
|
150 |
+
}[model_type]
|
151 |
+
|
152 |
+
config_args["vocab_size"] = 50257 # always for GPT2 checkpoints
|
153 |
+
config_args["block_size"] = 1024 # always for GPT2 checkpoints
|
154 |
+
|
155 |
+
config = GPTConfig(**config_args)
|
156 |
+
model = GPT(config)
|
157 |
+
sd = model.state_dict()
|
158 |
+
sd_keys = sd.keys()
|
159 |
+
|
160 |
+
sd_keys = [k for k in sd_keys if not k.endswith(".attn.bias")] # discard this mask
|
161 |
+
|
162 |
+
# init hugging face model
|
163 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
164 |
+
sd_hf = model_hf.state_dict()
|
165 |
+
sd_keys_hf = sd_hf.keys()
|
166 |
+
|
167 |
+
# copy while ensuring all of the parameters are aligned and match in names and types
|
168 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith(".attn.masked_bias")] # ignore these, just a buffer
|
169 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith(".attn.bias")] # same, just the mask (buffer)
|
170 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
171 |
+
|
172 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
173 |
+
# this means that we have to transpose these weights when we import them
|
174 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
175 |
+
for k in sd_keys_hf:
|
176 |
+
if any(k.endswith(w) for w in transposed):
|
177 |
+
# special treatment for the Conv1D weights we need to transpose
|
178 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
179 |
+
with torch.no_grad():
|
180 |
+
sd[k].copy_(sd_hf[k].t())
|
181 |
+
else:
|
182 |
+
# vanilla copy over the other parameters
|
183 |
+
assert sd_hf[k].shape == sd[k].shape
|
184 |
+
with torch.no_grad():
|
185 |
+
sd[k].copy_(sd_hf[k])
|
186 |
+
|
187 |
+
return model
|
188 |
+
|
189 |
+
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
|
190 |
+
# start with all of the candidate parameters
|
191 |
+
param_dict = {pn: p for pn, p in self.named_parameters()}
|
192 |
+
# filter out those that do not require grad
|
193 |
+
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
|
194 |
+
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
|
195 |
+
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
|
196 |
+
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
|
197 |
+
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
|
198 |
+
optim_groups = [
|
199 |
+
{'params': decay_params, 'weight_decay': weight_decay},
|
200 |
+
{'params': nodecay_params, 'weight_decay': 0.0}
|
201 |
+
]
|
202 |
+
num_decay_params = sum(p.numel() for p in decay_params)
|
203 |
+
num_nodecay_params = sum(p.numel() for p in nodecay_params)
|
204 |
+
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
|
205 |
+
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
|
206 |
+
# Create AdamW optimizer and use the fused version if it is available
|
207 |
+
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
|
208 |
+
use_fused = fused_available and device_type == 'cuda'
|
209 |
+
extra_args = dict(fused=True) if use_fused else dict()
|
210 |
+
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
|
211 |
+
print(f"using fused AdamW: {use_fused}")
|
212 |
+
|
213 |
+
return optimizer
|
214 |
+
|
215 |
+
@torch.no_grad()
|
216 |
+
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
|
217 |
+
"""
|
218 |
+
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
|
219 |
+
the sequence max_new_tokens times, feeding the predictions back into the model each time.
|
220 |
+
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
|
221 |
+
"""
|
222 |
+
for _ in range(max_new_tokens):
|
223 |
+
# if the sequence context is growing too long we must crop it at block_size
|
224 |
+
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
|
225 |
+
# forward the model to get the logits for the index in the sequence
|
226 |
+
logits, _ = self(idx_cond)
|
227 |
+
# pluck the logits at the final step and scale by desired temperature
|
228 |
+
logits = logits[:, -1, :] / temperature
|
229 |
+
# optionally crop the logits to only the top k options
|
230 |
+
if top_k is not None:
|
231 |
+
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
232 |
+
logits[logits < v[:, [-1]]] = -float('Inf')
|
233 |
+
# apply softmax to convert logits to (normalized) probabilities
|
234 |
+
probs = F.softmax(logits, dim=-1)
|
235 |
+
# sample from the distribution
|
236 |
+
idx_next = torch.multinomial(probs, num_samples=1)
|
237 |
+
# append sampled index to the running sequence and continue
|
238 |
+
idx = torch.cat((idx, idx_next), dim=1)
|
239 |
+
|
240 |
+
return idx
|
241 |
+
|
242 |
+
|
saved_model/ckpt.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1544198298
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22dd1a5c7d1d2040dd8d15df01c75f69de6cbaba8aff362718cdd4b4e7fa05ff
|
3 |
size 1544198298
|