Dump Readme. Need to update properly.
Browse files
README.md
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- vision
|
5 |
+
- image-segmentation
|
6 |
+
widget:
|
7 |
+
- src: >-
|
8 |
+
https://images.unsplash.com/photo-1643310325061-2beef64926a5?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8Nnx8cmFjb29uc3xlbnwwfHwwfHw%3D&w=1000&q=80
|
9 |
+
example_title: Person
|
10 |
+
- src: >-
|
11 |
+
https://freerangestock.com/sample/139043/young-man-standing-and-leaning-on-car.jpg
|
12 |
+
example_title: Person
|
13 |
+
datasets:
|
14 |
+
- mattmdjaga/human_parsing_dataset
|
15 |
+
pipeline_tag: image-segmentation
|
16 |
+
---
|
17 |
+
# Segformer B3 fine-tuned for clothes segmentation
|
18 |
+
|
19 |
+
SegFormer model fine-tuned on [ATR dataset](https://github.com/lemondan/HumanParsing-Dataset) for clothes segmentation but can also be used for human segmentation.
|
20 |
+
The dataset on hugging face is called "mattmdjaga/human_parsing_dataset".
|
21 |
+
|
22 |
+
|
23 |
+
**NEW** -
|
24 |
+
**[Training code](https://github.com/mattmdjaga/segformer_b2_clothes)**. Right now it only contains the pure code with some comments, but soon I'll add a colab notebook version
|
25 |
+
and a blog post with it to make it more friendly.
|
26 |
+
|
27 |
+
```python
|
28 |
+
from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation
|
29 |
+
from PIL import Image
|
30 |
+
import requests
|
31 |
+
import matplotlib.pyplot as plt
|
32 |
+
import torch.nn as nn
|
33 |
+
|
34 |
+
processor = SegformerImageProcessor.from_pretrained("sayeed99/segformer_b3_clothes")
|
35 |
+
model = AutoModelForSemanticSegmentation.from_pretrained("sayeed99/segformer_b3_clothes")
|
36 |
+
|
37 |
+
url = "https://plus.unsplash.com/premium_photo-1673210886161-bfcc40f54d1f?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8cGVyc29uJTIwc3RhbmRpbmd8ZW58MHx8MHx8&w=1000&q=80"
|
38 |
+
|
39 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
40 |
+
inputs = processor(images=image, return_tensors="pt")
|
41 |
+
|
42 |
+
outputs = model(**inputs)
|
43 |
+
logits = outputs.logits.cpu()
|
44 |
+
|
45 |
+
upsampled_logits = nn.functional.interpolate(
|
46 |
+
logits,
|
47 |
+
size=image.size[::-1],
|
48 |
+
mode="bilinear",
|
49 |
+
align_corners=False,
|
50 |
+
)
|
51 |
+
|
52 |
+
pred_seg = upsampled_logits.argmax(dim=1)[0]
|
53 |
+
plt.imshow(pred_seg)
|
54 |
+
```
|
55 |
+
|
56 |
+
Labels: 0: "Background", 1: "Hat", 2: "Hair", 3: "Sunglasses", 4: "Upper-clothes", 5: "Skirt", 6: "Pants", 7: "Dress", 8: "Belt", 9: "Left-shoe", 10: "Right-shoe", 11: "Face", 12: "Left-leg", 13: "Right-leg", 14: "Left-arm", 15: "Right-arm", 16: "Bag", 17: "Scarf"
|
57 |
+
|
58 |
+
### Evaluation
|
59 |
+
|
60 |
+
| Label Index | Label Name | Category Accuracy | Category IoU |
|
61 |
+
|:-------------:|:----------------:|:-----------------:|:------------:|
|
62 |
+
| 0 | Background | 0.99 | 0.99 |
|
63 |
+
| 1 | Hat | 0.73 | 0.68 |
|
64 |
+
| 2 | Hair | 0.91 | 0.82 |
|
65 |
+
| 3 | Sunglasses | 0.73 | 0.63 |
|
66 |
+
| 4 | Upper-clothes | 0.87 | 0.78 |
|
67 |
+
| 5 | Skirt | 0.76 | 0.65 |
|
68 |
+
| 6 | Pants | 0.90 | 0.84 |
|
69 |
+
| 7 | Dress | 0.74 | 0.55 |
|
70 |
+
| 8 | Belt | 0.35 | 0.30 |
|
71 |
+
| 9 | Left-shoe | 0.74 | 0.58 |
|
72 |
+
| 10 | Right-shoe | 0.75 | 0.60 |
|
73 |
+
| 11 | Face | 0.92 | 0.85 |
|
74 |
+
| 12 | Left-leg | 0.90 | 0.82 |
|
75 |
+
| 13 | Right-leg | 0.90 | 0.81 |
|
76 |
+
| 14 | Left-arm | 0.86 | 0.74 |
|
77 |
+
| 15 | Right-arm | 0.82 | 0.73 |
|
78 |
+
| 16 | Bag | 0.91 | 0.84 |
|
79 |
+
| 17 | Scarf | 0.63 | 0.29 |
|
80 |
+
|
81 |
+
Overall Evaluation Metrics:
|
82 |
+
- Evaluation Loss: 0.15
|
83 |
+
- Mean Accuracy: 0.80
|
84 |
+
- Mean IoU: 0.69
|
85 |
+
|
86 |
+
### License
|
87 |
+
|
88 |
+
The license for this model can be found [here](https://github.com/NVlabs/SegFormer/blob/master/LICENSE).
|
89 |
+
|
90 |
+
### BibTeX entry and citation info
|
91 |
+
|
92 |
+
```bibtex
|
93 |
+
@article{DBLP:journals/corr/abs-2105-15203,
|
94 |
+
author = {Enze Xie and
|
95 |
+
Wenhai Wang and
|
96 |
+
Zhiding Yu and
|
97 |
+
Anima Anandkumar and
|
98 |
+
Jose M. Alvarez and
|
99 |
+
Ping Luo},
|
100 |
+
title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with
|
101 |
+
Transformers},
|
102 |
+
journal = {CoRR},
|
103 |
+
volume = {abs/2105.15203},
|
104 |
+
year = {2021},
|
105 |
+
url = {https://arxiv.org/abs/2105.15203},
|
106 |
+
eprinttype = {arXiv},
|
107 |
+
eprint = {2105.15203},
|
108 |
+
timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
|
109 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib},
|
110 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
111 |
+
}
|
112 |
+
```
|