Initial Commit
Browse files- README.md +20 -0
- dqn-MountainCar-v0.zip +1 -1
- dqn-MountainCar-v0/data +13 -13
- results.json +1 -1
README.md
CHANGED
@@ -32,6 +32,8 @@ with hyperparameter optimization and pre-trained agents included.
|
|
32 |
## Usage (with SB3 RL Zoo)
|
33 |
|
34 |
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
|
|
|
|
|
35 |
|
36 |
```
|
37 |
# Download model and save it into the logs/ folder
|
@@ -45,3 +47,21 @@ python train.py --algo dqn --env MountainCar-v0 -f logs/
|
|
45 |
# Upload the model and generate video (when possible)
|
46 |
python -m utils.push_to_hub --algo dqn --env MountainCar-v0 -f logs/ -orga sb3
|
47 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
## Usage (with SB3 RL Zoo)
|
33 |
|
34 |
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
|
38 |
```
|
39 |
# Download model and save it into the logs/ folder
|
|
|
47 |
# Upload the model and generate video (when possible)
|
48 |
python -m utils.push_to_hub --algo dqn --env MountainCar-v0 -f logs/ -orga sb3
|
49 |
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('batch_size', 128),
|
54 |
+
('buffer_size', 10000),
|
55 |
+
('exploration_final_eps', 0.07),
|
56 |
+
('exploration_fraction', 0.2),
|
57 |
+
('gamma', 0.98),
|
58 |
+
('gradient_steps', 8),
|
59 |
+
('learning_rate', 0.004),
|
60 |
+
('learning_starts', 1000),
|
61 |
+
('n_timesteps', 120000.0),
|
62 |
+
('policy', 'MlpPolicy'),
|
63 |
+
('policy_kwargs', 'dict(net_arch=[256, 256])'),
|
64 |
+
('target_update_interval', 600),
|
65 |
+
('train_freq', 16),
|
66 |
+
('normalize', False)])
|
67 |
+
```
|
dqn-MountainCar-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1103767
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc7f7861b17461282de2b85694d9ca48e97a97c650513acf42021f70182f56db
|
3 |
size 1103767
|
dqn-MountainCar-v0/data
CHANGED
@@ -4,15 +4,15 @@
|
|
4 |
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.dqn.policies",
|
6 |
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function DQNPolicy.__init__ at
|
8 |
-
"_build": "<function DQNPolicy._build at
|
9 |
-
"make_q_net": "<function DQNPolicy.make_q_net at
|
10 |
-
"forward": "<function DQNPolicy.forward at
|
11 |
-
"_predict": "<function DQNPolicy._predict at
|
12 |
-
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at
|
13 |
-
"set_training_mode": "<function DQNPolicy.set_training_mode at
|
14 |
"__abstractmethods__": "frozenset()",
|
15 |
-
"_abc_impl": "<_abc_data object at
|
16 |
},
|
17 |
"verbose": 1,
|
18 |
"policy_kwargs": {
|
@@ -89,12 +89,12 @@
|
|
89 |
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
90 |
"__module__": "stable_baselines3.common.buffers",
|
91 |
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
92 |
-
"__init__": "<function ReplayBuffer.__init__ at
|
93 |
-
"add": "<function ReplayBuffer.add at
|
94 |
-
"sample": "<function ReplayBuffer.sample at
|
95 |
-
"_get_samples": "<function ReplayBuffer._get_samples at
|
96 |
"__abstractmethods__": "frozenset()",
|
97 |
-
"_abc_impl": "<_abc_data object at
|
98 |
},
|
99 |
"replay_buffer_kwargs": {},
|
100 |
"train_freq": {
|
|
|
4 |
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.dqn.policies",
|
6 |
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7f8b5764cb00>",
|
8 |
+
"_build": "<function DQNPolicy._build at 0x7f8b5764cb90>",
|
9 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7f8b5764cc20>",
|
10 |
+
"forward": "<function DQNPolicy.forward at 0x7f8b5764ccb0>",
|
11 |
+
"_predict": "<function DQNPolicy._predict at 0x7f8b5764cd40>",
|
12 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f8b5764cdd0>",
|
13 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f8b5764ce60>",
|
14 |
"__abstractmethods__": "frozenset()",
|
15 |
+
"_abc_impl": "<_abc_data object at 0x7f8b576444e0>"
|
16 |
},
|
17 |
"verbose": 1,
|
18 |
"policy_kwargs": {
|
|
|
89 |
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
90 |
"__module__": "stable_baselines3.common.buffers",
|
91 |
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
92 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7f8b57abeef0>",
|
93 |
+
"add": "<function ReplayBuffer.add at 0x7f8b57abef80>",
|
94 |
+
"sample": "<function ReplayBuffer.sample at 0x7f8b57ab3680>",
|
95 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f8b57ab3710>",
|
96 |
"__abstractmethods__": "frozenset()",
|
97 |
+
"_abc_impl": "<_abc_data object at 0x7f8b57b1d480>"
|
98 |
},
|
99 |
"replay_buffer_kwargs": {},
|
100 |
"train_freq": {
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -103.4, "std_reward": 7.4859869088851605, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-20T09:
|
|
|
1 |
+
{"mean_reward": -103.4, "std_reward": 7.4859869088851605, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-20T09:58:38.915474"}
|