Initial commit
Browse files- .gitattributes +2 -0
- README.md +71 -0
- args.yml +65 -0
- config.yml +32 -0
- env_kwargs.yml +1 -0
- ppo-HalfCheetah-v3.zip +3 -0
- ppo-HalfCheetah-v3/_stable_baselines3_version +1 -0
- ppo-HalfCheetah-v3/data +120 -0
- ppo-HalfCheetah-v3/policy.optimizer.pth +3 -0
- ppo-HalfCheetah-v3/policy.pth +3 -0
- ppo-HalfCheetah-v3/pytorch_variables.pth +3 -0
- ppo-HalfCheetah-v3/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
29 |
+
vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- HalfCheetah-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 5836.27 +/- 171.68
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: HalfCheetah-v3
|
20 |
+
type: HalfCheetah-v3
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **HalfCheetah-v3**
|
24 |
+
This is a trained model of a **PPO** agent playing **HalfCheetah-v3**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo ppo --env HalfCheetah-v3 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo ppo --env HalfCheetah-v3 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo ppo --env HalfCheetah-v3 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo ppo --env HalfCheetah-v3 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('batch_size', 64),
|
54 |
+
('clip_range', 0.1),
|
55 |
+
('ent_coef', 0.000401762),
|
56 |
+
('gae_lambda', 0.92),
|
57 |
+
('gamma', 0.98),
|
58 |
+
('learning_rate', 2.0633e-05),
|
59 |
+
('max_grad_norm', 0.8),
|
60 |
+
('n_envs', 1),
|
61 |
+
('n_epochs', 20),
|
62 |
+
('n_steps', 512),
|
63 |
+
('n_timesteps', 1000000.0),
|
64 |
+
('normalize', True),
|
65 |
+
('policy', 'MlpPolicy'),
|
66 |
+
('policy_kwargs',
|
67 |
+
'dict( log_std_init=-2, ortho_init=False, activation_fn=nn.ReLU, '
|
68 |
+
'net_arch=[dict(pi=[256, 256], vf=[256, 256])] )'),
|
69 |
+
('vf_coef', 0.58096),
|
70 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
71 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ppo
|
4 |
+
- - env
|
5 |
+
- HalfCheetah-v3
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 20
|
10 |
+
- - eval_freq
|
11 |
+
- 25000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- logs/
|
18 |
+
- - log_interval
|
19 |
+
- 10
|
20 |
+
- - n_eval_envs
|
21 |
+
- 5
|
22 |
+
- - n_evaluations
|
23 |
+
- 20
|
24 |
+
- - n_jobs
|
25 |
+
- 1
|
26 |
+
- - n_startup_trials
|
27 |
+
- 10
|
28 |
+
- - n_timesteps
|
29 |
+
- -1
|
30 |
+
- - n_trials
|
31 |
+
- 10
|
32 |
+
- - no_optim_plots
|
33 |
+
- false
|
34 |
+
- - num_threads
|
35 |
+
- 2
|
36 |
+
- - optimization_log_path
|
37 |
+
- null
|
38 |
+
- - optimize_hyperparameters
|
39 |
+
- false
|
40 |
+
- - pruner
|
41 |
+
- median
|
42 |
+
- - sampler
|
43 |
+
- tpe
|
44 |
+
- - save_freq
|
45 |
+
- -1
|
46 |
+
- - save_replay_buffer
|
47 |
+
- false
|
48 |
+
- - seed
|
49 |
+
- 594371
|
50 |
+
- - storage
|
51 |
+
- null
|
52 |
+
- - study_name
|
53 |
+
- null
|
54 |
+
- - tensorboard_log
|
55 |
+
- ''
|
56 |
+
- - trained_agent
|
57 |
+
- ''
|
58 |
+
- - truncate_last_trajectory
|
59 |
+
- true
|
60 |
+
- - uuid
|
61 |
+
- true
|
62 |
+
- - vec_env
|
63 |
+
- dummy
|
64 |
+
- - verbose
|
65 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 64
|
4 |
+
- - clip_range
|
5 |
+
- 0.1
|
6 |
+
- - ent_coef
|
7 |
+
- 0.000401762
|
8 |
+
- - gae_lambda
|
9 |
+
- 0.92
|
10 |
+
- - gamma
|
11 |
+
- 0.98
|
12 |
+
- - learning_rate
|
13 |
+
- 2.0633e-05
|
14 |
+
- - max_grad_norm
|
15 |
+
- 0.8
|
16 |
+
- - n_envs
|
17 |
+
- 1
|
18 |
+
- - n_epochs
|
19 |
+
- 20
|
20 |
+
- - n_steps
|
21 |
+
- 512
|
22 |
+
- - n_timesteps
|
23 |
+
- 1000000.0
|
24 |
+
- - normalize
|
25 |
+
- true
|
26 |
+
- - policy
|
27 |
+
- MlpPolicy
|
28 |
+
- - policy_kwargs
|
29 |
+
- dict( log_std_init=-2, ortho_init=False, activation_fn=nn.ReLU, net_arch=[dict(pi=[256,
|
30 |
+
256], vf=[256, 256])] )
|
31 |
+
- - vf_coef
|
32 |
+
- 0.58096
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
ppo-HalfCheetah-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8df0cd0c34b5ddf1e5210a5f45507e6d5da7c2f5bfde825e548009aa51d21a6f
|
3 |
+
size 1744850
|
ppo-HalfCheetah-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
ppo-HalfCheetah-v3/data
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe75c50b950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe75c50b9e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe75c50ba70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe75c50bb00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe75c50bb90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe75c50bc20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe75c50bcb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe75c50bd40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe75c50bdd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe75c50be60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe75c50bef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fe75c55c840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVjgAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA1hY3RpdmF0aW9uX2ZulIwbdG9yY2gubm4ubW9kdWxlcy5hY3RpdmF0aW9ulIwEUmVMVZSTlIwIbmV0X2FyY2iUXZR9lCiMAnBplF2UKE0AAU0AAWWMAnZmlF2UKE0AAU0AAWV1YXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
|
28 |
+
"net_arch": [
|
29 |
+
{
|
30 |
+
"pi": [
|
31 |
+
256,
|
32 |
+
256
|
33 |
+
],
|
34 |
+
"vf": [
|
35 |
+
256,
|
36 |
+
256
|
37 |
+
]
|
38 |
+
}
|
39 |
+
]
|
40 |
+
},
|
41 |
+
"observation_space": {
|
42 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
43 |
+
":serialized:": "gASVpQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxGFlGgKiUOIAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5R0lGKMBGhpZ2iUaBBoEksAhZRoFIeUUpQoSwFLEYWUaAqJQ4gAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/lHSUYowNYm91bmRlZF9iZWxvd5RoEGgSSwCFlGgUh5RSlChLAUsRhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEQAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEGgSSwCFlGgUh5RSlChLAUsRhZRoKIlDEQAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSxGFlHViLg==",
|
44 |
+
"dtype": "float64",
|
45 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf]",
|
46 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
|
47 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False]",
|
48 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False]",
|
49 |
+
"_np_random": null,
|
50 |
+
"_shape": [
|
51 |
+
17
|
52 |
+
]
|
53 |
+
},
|
54 |
+
"action_space": {
|
55 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
56 |
+
":serialized:": "gASVPwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwaFlGgKiUMYAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsGhZRoColDGAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLBoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwYBAQEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwaFlGgoiUMGAQEBAQEBlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDiMBXN0YXRllH2UKIwDa2V5lGgQaBJLAIWUaBSHlFKUKEsBTXAChZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGKJQsAJAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUdJRijANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YowGX3NoYXBllEsGhZR1Yi4=",
|
57 |
+
"dtype": "float32",
|
58 |
+
"low": "[-1. -1. -1. -1. -1. -1.]",
|
59 |
+
"high": "[1. 1. 1. 1. 1. 1.]",
|
60 |
+
"bounded_below": "[ True True True True True True]",
|
61 |
+
"bounded_above": "[ True True True True True True]",
|
62 |
+
"_np_random": "RandomState(MT19937)",
|
63 |
+
"_shape": [
|
64 |
+
6
|
65 |
+
]
|
66 |
+
},
|
67 |
+
"n_envs": 1,
|
68 |
+
"num_timesteps": 1000448,
|
69 |
+
"_total_timesteps": 1000000,
|
70 |
+
"_num_timesteps_at_start": 0,
|
71 |
+
"seed": 0,
|
72 |
+
"action_noise": null,
|
73 |
+
"start_time": 1637082108.4846802,
|
74 |
+
"learning_rate": {
|
75 |
+
":type:": "<class 'function'>",
|
76 |
+
":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPvWioPaniROFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
77 |
+
},
|
78 |
+
"tensorboard_log": null,
|
79 |
+
"lr_schedule": {
|
80 |
+
":type:": "<class 'function'>",
|
81 |
+
":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPvWioPaniROFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
82 |
+
},
|
83 |
+
"_last_obs": null,
|
84 |
+
"_last_episode_starts": {
|
85 |
+
":type:": "<class 'numpy.ndarray'>",
|
86 |
+
":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
|
87 |
+
},
|
88 |
+
"_last_original_obs": {
|
89 |
+
":type:": "<class 'numpy.ndarray'>",
|
90 |
+
":serialized:": "gASVEgEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLEYaUaAOMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUOIaFIFXp2KoT+o3rF0DX+DvwiEx31tOKo/zI56yPvktz+k0HadpgOgv3h3T3FuxaA/zBhHWaFCrT/gG+r91Dmcvy4K69xzcZg/In8/vUmsy79HXkJYoz/AP1DR1xPgd76/bzW50p0Crr9jAXjCifayP9SYdKeoktA/5IODyJ+twj+cWfee8ejPv5R0lGIu"
|
91 |
+
},
|
92 |
+
"_episode_num": 0,
|
93 |
+
"use_sde": false,
|
94 |
+
"sde_sample_freq": -1,
|
95 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
96 |
+
"ep_info_buffer": {
|
97 |
+
":type:": "<class 'collections.deque'>",
|
98 |
+
":serialized:": "gASVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIumjIeOBqtUCUhpRSlIwBbJRN6AOMAXSUR0CiiG35vcagdX2UKGgGaAloD0MIDRr6J4watkCUhpRSlGgVTegDaBZHQKKNB4BV+7V1fZQoaAZoCWgPQwhQbXAiOuqPQJSGlFKUaBVN6ANoFkdAopGaIJqqO3V9lChoBmgJaA9DCJ6Y9WJI9bVAlIaUUpRoFU3oA2gWR0CilggC4jKQdX2UKGgGaAloD0MII93PKSDytUCUhpRSlGgVTegDaBZHQKKakDfWMCN1fZQoaAZoCWgPQwjk84qnnmi1QJSGlFKUaBVN6ANoFkdAop8RXr+o+HV9lChoBmgJaA9DCO52vTT9ObZAlIaUUpRoFU3oA2gWR0Cio6Em6XjVdX2UKGgGaAloD0MIzuMwmCMhtkCUhpRSlGgVTegDaBZHQKKoI3BHkLh1fZQoaAZoCWgPQwhWn6utBKm1QJSGlFKUaBVN6ANoFkdAoqyhPGhmG3V9lChoBmgJaA9DCHWtvU/NAbZAlIaUUpRoFU3oA2gWR0CisT5YHPeIdX2UKGgGaAloD0MIo8ow7hantUCUhpRSlGgVTegDaBZHQKK1vXlr/Kh1fZQoaAZoCWgPQwhh/Z/DuDi2QJSGlFKUaBVN6ANoFkdAorpP5HmRvHV9lChoBmgJaA9DCDAvwD5CMLZAlIaUUpRoFU3oA2gWR0CivtnYg7o0dX2UKGgGaAloD0MIE38UdeYVVsCUhpRSlGgVTegDaBZHQKLDd5kbxVh1fZQoaAZoCWgPQwg+sOO/IAG2QJSGlFKUaBVN6ANoFkdAosgOnn+yaHV9lChoBmgJaA9DCHmvWplwy7VAlIaUUpRoFU3oA2gWR0CizJ2q1gIAdX2UKGgGaAloD0MIGan3VA4TeECUhpRSlGgVTegDaBZHQKLRKtcv/R51fZQoaAZoCWgPQwj/QSRDcve1QJSGlFKUaBVN6ANoFkdAotR27xusLnV9lChoBmgJaA9DCJM3wMx3potAlIaUUpRoFU3oA2gWR0Ci2ReiaiK0dX2UKGgGaAloD0MI/gqZK7NttkCUhpRSlGgVTegDaBZHQKLdqV9nbqR1fZQoaAZoCWgPQwh5B3jSIh+2QJSGlFKUaBVN6ANoFkdAouJDZL7GenV9lChoBmgJaA9DCBbB/1aSuaJAlIaUUpRoFU3oA2gWR0Ci5uE9Mbm2dX2UKGgGaAloD0MIIH2TpiGItkCUhpRSlGgVTegDaBZHQKLrffYzzmR1fZQoaAZoCWgPQwiNmq+SR/G1QJSGlFKUaBVN6ANoFkdAovAbg/C66XV9lChoBmgJaA9DCNYaSu1dT7ZAlIaUUpRoFU3oA2gWR0Ci9L0BXCCSdX2UKGgGaAloD0MIrDb/r2b1tUCUhpRSlGgVTegDaBZHQKMER+T/yXl1fZQoaAZoCWgPQwgvGcdIekq2QJSGlFKUaBVN6ANoFkdAowjVHvttynV9lChoBmgJaA9DCK5/12fCGbZAlIaUUpRoFU3oA2gWR0CjDWkcCHRDdX2UKGgGaAloD0MIOGvwvir6UsCUhpRSlGgVTegDaBZHQKMR/80DU3J1fZQoaAZoCWgPQwhNLsbAAhS2QJSGlFKUaBVN6ANoFkdAoxZ7XYlIE3V9lChoBmgJaA9DCFyrPex1dbZAlIaUUpRoFU3oA2gWR0CjGwQFs54odX2UKGgGaAloD0MItr+zPXKstUCUhpRSlGgVTegDaBZHQKMf2s5GSZB1fZQoaAZoCWgPQwi8AzxpfQC2QJSGlFKUaBVN6ANoFkdAoySkB4lhPXV9lChoBmgJaA9DCDVAaahpWLZAlIaUUpRoFU3oA2gWR0CjKVEQf6oEdX2UKGgGaAloD0MIsyYW+LIUtkCUhpRSlGgVTegDaBZHQKMt0NvwVj91fZQoaAZoCWgPQwgCRpc3S2+2QJSGlFKUaBVN6ANoFkdAozIxZMcp9nV9lChoBmgJaA9DCEMaFThV7bVAlIaUUpRoFU3oA2gWR0CjNp6NEPUbdX2UKGgGaAloD0MIVFOSdbBbtkCUhpRSlGgVTegDaBZHQKM7L10T1011fZQoaAZoCWgPQwhl+5C38B+2QJSGlFKUaBVN6ANoFkdAoz6gm/nGKnV9lChoBmgJaA9DCDcZVYZla7ZAlIaUUpRoFU3oA2gWR0CjQzSmqHXVdX2UKGgGaAloD0MIG2X9ZhZXtkCUhpRSlGgVTegDaBZHQKNHtegte2N1fZQoaAZoCWgPQwjNrKWAjBO2QJSGlFKUaBVN6ANoFkdAo0xNLOAy23V9lChoBmgJaA9DCAjJAiYI6bVAlIaUUpRoFU3oA2gWR0CjUND6WPcSdX2UKGgGaAloD0MI4EkLlwFwtkCUhpRSlGgVTegDaBZHQKNVV/8VHnV1fZQoaAZoCWgPQwgyyF2E4US2QJSGlFKUaBVN6ANoFkdAo1nlV1fVqnV9lChoBmgJaA9DCBFvnX+Lh7ZAlIaUUpRoFU3oA2gWR0CjXoFJpWWAdX2UKGgGaAloD0MIp+z0g9ZNtkCUhpRSlGgVTegDaBZHQKNjFH8TBZZ1fZQoaAZoCWgPQwjL94xE6Ii2QJSGlFKUaBVN6ANoFkdAo2eUXcgyM3V9lChoBmgJaA9DCOepDrnFh7ZAlIaUUpRoFU3oA2gWR0CjbBhZZB9kdX2UKGgGaAloD0MIXb9gN6yItkCUhpRSlGgVTegDaBZHQKNwqZlWfbt1fZQoaAZoCWgPQwhLPQtCmXe2QJSGlFKUaBVN6ANoFkdAo4AydWhh6XV9lChoBmgJaA9DCLcKYqDTmLZAlIaUUpRoFU3oA2gWR0CjhN4+B6KMdX2UKGgGaAloD0MI3GPpQwsFskCUhpRSlGgVTegDaBZHQKOJgvJzT4N1fZQoaAZoCWgPQwhkWpvGUmK2QJSGlFKUaBVN6ANoFkdAo44n+6y0KXV9lChoBmgJaA9DCEz9vKlIbbZAlIaUUpRoFU3oA2gWR0CjksgmzBykdX2UKGgGaAloD0MIfNRfr/B0fECUhpRSlGgVTegDaBZHQKOXag9vCMx1fZQoaAZoCWgPQwiQZcHEs7K1QJSGlFKUaBVN6ANoFkdAo5wOtCAtnXV9lChoBmgJaA9DCI/+l2t1jbZAlIaUUpRoFU3oA2gWR0CjoJntfG+9dX2UKGgGaAloD0MIYADhQ8mKtkCUhpRSlGgVTegDaBZHQKOlKejEehh1fZQoaAZoCWgPQwgCucSRHw+2QJSGlFKUaBVN6ANoFkdAo6hjJr+HanV9lChoBmgJaA9DCM5SspykNLZAlIaUUpRoFU3oA2gWR0CjrPFXiiqRdX2UKGgGaAloD0MIO6dZoA3BlUCUhpRSlGgVTegDaBZHQKOxfsDW9UV1fZQoaAZoCWgPQwh6GFqd8I+2QJSGlFKUaBVN6ANoFkdAo7YF/J/5L3V9lChoBmgJaA9DCMzuycNucbZAlIaUUpRoFU3oA2gWR0Cjuot4A0bcdX2UKGgGaAloD0MIYM0BgnGXtkCUhpRSlGgVTegDaBZHQKO++j5bhWJ1fZQoaAZoCWgPQwjMft3p9ha2QJSGlFKUaBVN6ANoFkdAo8OAxnFo+XV9lChoBmgJaA9DCMdMol60mLZAlIaUUpRoFU3oA2gWR0Cjx9Tru6VddX2UKGgGaAloD0MI7rJfd5p+tkCUhpRSlGgVTegDaBZHQKPMSIznA7B1fZQoaAZoCWgPQwgBT1q4QHe2QJSGlFKUaBVN6ANoFkdAo9DJOafBe3V9lChoBmgJaA9DCKOSOgHVXbZAlIaUUpRoFU3oA2gWR0Cj1VvKuB+XdX2UKGgGaAloD0MIrrfNVARBtkCUhpRSlGgVTegDaBZHQKPaCFZgXuV1fZQoaAZoCWgPQwgnTBjNriq2QJSGlFKUaBVN6ANoFkdAo96gnOSntXV9lChoBmgJaA9DCCfAsPx1d7ZAlIaUUpRoFU3oA2gWR0Cj4wv+fh/BdX2UKGgGaAloD0MIcEOM11xstkCUhpRSlGgVTegDaBZHQKPnaXO4XoF1fZQoaAZoCWgPQwjHoX4XPly2QJSGlFKUaBVN6ANoFkdAo+wLlcQiA3V9lChoBmgJaA9DCNbh6Cp5tLZAlIaUUpRoFU3oA2gWR0Cj+tCwB5oodX2UKGgGaAloD0MIJuSDnl0gtkCUhpRSlGgVTegDaBZHQKP/TeTFERd1fZQoaAZoCWgPQwjWcfxQGVS2QJSGlFKUaBVN6ANoFkdApAOSmbb1y3V9lChoBmgJaA9DCFSM8zeNCrZAlIaUUpRoFU3oA2gWR0CkB+FbFCLNdX2UKGgGaAloD0MISS9q938stkCUhpRSlGgVTegDaBZHQKQMVehwl0J1fZQoaAZoCWgPQwhfCg+a6Vy2QJSGlFKUaBVN6ANoFkdApBDnJcPe6HV9lChoBmgJaA9DCPXb14GPf7ZAlIaUUpRoFU3oA2gWR0CkFDzAFgUldX2UKGgGaAloD0MIhEnx8YGTtkCUhpRSlGgVTegDaBZHQKQY49C/oJR1fZQoaAZoCWgPQwhkr3d/BMG2QJSGlFKUaBVN6ANoFkdApB1y1E3KjnV9lChoBmgJaA9DCGR5Vz3klrZAlIaUUpRoFU3oA2gWR0CkIg4V6/qPdX2UKGgGaAloD0MI78hYbaqatkCUhpRSlGgVTegDaBZHQKQm8I5YHPh1fZQoaAZoCWgPQwjmkNRCgT+2QJSGlFKUaBVN6ANoFkdApCucYfnwHHV9lChoBmgJaA9DCCEeiZfnvKtAlIaUUpRoFU3oA2gWR0CkMB9at9x7dX2UKGgGaAloD0MIzy9K0NeAtkCUhpRSlGgVTegDaBZHQKQ0lb3XZoR1fZQoaAZoCWgPQwiJ8C+CVk22QJSGlFKUaBVN6ANoFkdApDkHYg7o0XV9lChoBmgJaA9DCEq3JXL5f7ZAlIaUUpRoFU3oA2gWR0CkPW8D0UXYdX2UKGgGaAloD0MIOj/FceSXtkCUhpRSlGgVTegDaBZHQKRB3SvTw2F1fZQoaAZoCWgPQwj+mqxRr+6dQJSGlFKUaBVN6ANoFkdApEYxuhsZYXV9lChoBmgJaA9DCEVoBBvXerZAlIaUUpRoFU3oA2gWR0CkSpXtjTa1dX2UKGgGaAloD0MIqIx/nwmTtkCUhpRSlGgVTegDaBZHQKRPEHymQ8x1fZQoaAZoCWgPQwiXOV0Wd7O2QJSGlFKUaBVN6ANoFkdApFObXOGCZnV9lChoBmgJaA9DCIM0Y9G80LZAlIaUUpRoFU3oA2gWR0CkWDAvlEJCdX2UKGgGaAloD0MIflTDfnuXtkCUhpRSlGgVTegDaBZHQKRct1lGwzN1fZQoaAZoCWgPQwiN7ErLUJG2QJSGlFKUaBVN6ANoFkdApGE9aKUFCHV9lChoBmgJaA9DCAdCsoCVjLZAlIaUUpRoFU3oA2gWR0CkZb7KJVKgdWUu"
|
99 |
+
},
|
100 |
+
"ep_success_buffer": {
|
101 |
+
":type:": "<class 'collections.deque'>",
|
102 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
103 |
+
},
|
104 |
+
"_n_updates": 39080,
|
105 |
+
"n_steps": 512,
|
106 |
+
"gamma": 0.98,
|
107 |
+
"gae_lambda": 0.92,
|
108 |
+
"ent_coef": 0.000401762,
|
109 |
+
"vf_coef": 0.58096,
|
110 |
+
"max_grad_norm": 0.8,
|
111 |
+
"batch_size": 64,
|
112 |
+
"n_epochs": 20,
|
113 |
+
"clip_range": {
|
114 |
+
":type:": "<class 'function'>",
|
115 |
+
":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
116 |
+
},
|
117 |
+
"clip_range_vf": null,
|
118 |
+
"normalize_advantage": true,
|
119 |
+
"target_kl": null
|
120 |
+
}
|
ppo-HalfCheetah-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf69d34b52c7745b490514a875e6d8f2e62861b16535746acd4995bffca07d4e
|
3 |
+
size 1147863
|
ppo-HalfCheetah-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:053474e44ab57cd42fbe9c2e3c363649bd40c5edcab8c97b4623814615dad129
|
3 |
+
size 574782
|
ppo-HalfCheetah-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-HalfCheetah-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ba56f0f914a6861519415ed87081eec2878557e00726b9775df96bbda34bd3c
|
3 |
+
size 1642749
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 5836.2658249, "std_reward": 171.68093382743237, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T13:52:49.342768"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69e5eeef6cea0be7a91a46590964c05513e7e1ed975eadd8298a0c2846bd8692
|
3 |
+
size 43428
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b364c6b89c475a08290ac03d8e557c337cbdb592b33ef0e38b7e788cc071e759
|
3 |
+
size 5012
|