Initial commit
Browse files- .gitattributes +2 -0
- README.md +58 -0
- args.yml +65 -0
- config.yml +9 -0
- env_kwargs.yml +1 -0
- ppo-Walker2d-v3.zip +3 -0
- ppo-Walker2d-v3/_stable_baselines3_version +1 -0
- ppo-Walker2d-v3/data +99 -0
- ppo-Walker2d-v3/policy.optimizer.pth +3 -0
- ppo-Walker2d-v3/policy.pth +3 -0
- ppo-Walker2d-v3/pytorch_variables.pth +3 -0
- ppo-Walker2d-v3/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
29 |
+
vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Walker2d-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 3571.74 +/- 807.75
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: Walker2d-v3
|
20 |
+
type: Walker2d-v3
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **Walker2d-v3**
|
24 |
+
This is a trained model of a **PPO** agent playing **Walker2d-v3**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo ppo --env Walker2d-v3 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo ppo --env Walker2d-v3 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo ppo --env Walker2d-v3 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo ppo --env Walker2d-v3 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'),
|
54 |
+
('n_timesteps', 1000000.0),
|
55 |
+
('normalize', True),
|
56 |
+
('policy', 'MlpPolicy'),
|
57 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
58 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ppo
|
4 |
+
- - env
|
5 |
+
- Walker2d-v3
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 20
|
10 |
+
- - eval_freq
|
11 |
+
- 10000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- logs/
|
18 |
+
- - log_interval
|
19 |
+
- 10
|
20 |
+
- - n_eval_envs
|
21 |
+
- 5
|
22 |
+
- - n_evaluations
|
23 |
+
- 20
|
24 |
+
- - n_jobs
|
25 |
+
- 1
|
26 |
+
- - n_startup_trials
|
27 |
+
- 10
|
28 |
+
- - n_timesteps
|
29 |
+
- -1
|
30 |
+
- - n_trials
|
31 |
+
- 10
|
32 |
+
- - no_optim_plots
|
33 |
+
- false
|
34 |
+
- - num_threads
|
35 |
+
- 2
|
36 |
+
- - optimization_log_path
|
37 |
+
- null
|
38 |
+
- - optimize_hyperparameters
|
39 |
+
- false
|
40 |
+
- - pruner
|
41 |
+
- median
|
42 |
+
- - sampler
|
43 |
+
- tpe
|
44 |
+
- - save_freq
|
45 |
+
- -1
|
46 |
+
- - save_replay_buffer
|
47 |
+
- false
|
48 |
+
- - seed
|
49 |
+
- 594371
|
50 |
+
- - storage
|
51 |
+
- null
|
52 |
+
- - study_name
|
53 |
+
- null
|
54 |
+
- - tensorboard_log
|
55 |
+
- ''
|
56 |
+
- - trained_agent
|
57 |
+
- ''
|
58 |
+
- - truncate_last_trajectory
|
59 |
+
- true
|
60 |
+
- - uuid
|
61 |
+
- true
|
62 |
+
- - vec_env
|
63 |
+
- dummy
|
64 |
+
- - verbose
|
65 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - env_wrapper
|
3 |
+
- sb3_contrib.common.wrappers.TimeFeatureWrapper
|
4 |
+
- - n_timesteps
|
5 |
+
- 1000000.0
|
6 |
+
- - normalize
|
7 |
+
- true
|
8 |
+
- - policy
|
9 |
+
- MlpPolicy
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
ppo-Walker2d-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75988071445692995cc4ad31571b6e2b560a0db6622f38ab6fae814ed1ae91a1
|
3 |
+
size 166045
|
ppo-Walker2d-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
ppo-Walker2d-v3/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f086b69a950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f086b69a9e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f086b69aa70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f086b69ab00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f086b69ab90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f086b69ac20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f086b69acb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f086b69ad40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f086b69add0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f086b69ae60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f086b69aef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f086b6eb840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVJwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxKFlGgKiUNIAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAAAAlHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsShZRoColDSAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLEoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxIAAAAAAAAAAAAAAAAAAAAAAAGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSxKFlGgoiUMSAAAAAAAAAAAAAAAAAAAAAAABlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSxKFlHViLg==",
|
26 |
+
"dtype": "float32",
|
27 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf 0.]",
|
28 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf 1.]",
|
29 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False True]",
|
30 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False True]",
|
31 |
+
"_np_random": null,
|
32 |
+
"_shape": [
|
33 |
+
18
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gASVPwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwaFlGgKiUMYAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsGhZRoColDGAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLBoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwYBAQEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwaFlGgoiUMGAQEBAQEBlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDiMBXN0YXRllH2UKIwDa2V5lGgQaBJLAIWUaBSHlFKUKEsBTXAChZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGKJQsAJAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUdJRijANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YowGX3NoYXBllEsGhZR1Yi4=",
|
39 |
+
"dtype": "float32",
|
40 |
+
"low": "[-1. -1. -1. -1. -1. -1.]",
|
41 |
+
"high": "[1. 1. 1. 1. 1. 1.]",
|
42 |
+
"bounded_below": "[ True True True True True True]",
|
43 |
+
"bounded_above": "[ True True True True True True]",
|
44 |
+
"_np_random": "RandomState(MT19937)",
|
45 |
+
"_shape": [
|
46 |
+
6
|
47 |
+
]
|
48 |
+
},
|
49 |
+
"n_envs": 1,
|
50 |
+
"num_timesteps": 1001472,
|
51 |
+
"_total_timesteps": 1000000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": 0,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1635497834.165473,
|
56 |
+
"learning_rate": 0.0003,
|
57 |
+
"tensorboard_log": null,
|
58 |
+
"lr_schedule": {
|
59 |
+
":type:": "<class 'function'>",
|
60 |
+
":serialized:": "gASVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
61 |
+
},
|
62 |
+
"_last_obs": null,
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'numpy.ndarray'>",
|
69 |
+
":serialized:": "gASV0gAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLEoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUNIIjigP3mN+bmKzyc7suyYO4j7zLrsq9Y6CUQ7O1OltLp0nMe6UVAwOUBD0rqoQ+A6FO4WO45FkrsCq3A7JG6Bu3CWTTsAAIA/lHSUYi4="
|
70 |
+
},
|
71 |
+
"_episode_num": 0,
|
72 |
+
"use_sde": false,
|
73 |
+
"sde_sample_freq": -1,
|
74 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
75 |
+
"ep_info_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gASVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZcVwdcBCoECUhpRSlIwBbJRNJQKMAXSUR0CcUS0lZ5iWdX2UKGgGaAloD0MIFQFO71q4qUCUhpRSlGgVTT0DaBZHQJxUf9l2/zt1fZQoaAZoCWgPQwhfmiLAsXetQJSGlFKUaBVN6ANoFkdAnFy0Sh8IA3V9lChoBmgJaA9DCBPVWwOLWK5AlIaUUpRoFU3oA2gWR0CcYQKmbb1zdX2UKGgGaAloD0MI9Q63QyP4rECUhpRSlGgVTegDaBZHQJxpaT2WY4R1fZQoaAZoCWgPQwicacL2Y+GkQJSGlFKUaBVNwAJoFkdAnGwwP3BYWHV9lChoBmgJaA9DCGAdxw8Fea1AlIaUUpRoFU21A2gWR0CcdCD0UXYUdX2UKGgGaAloD0MIDcLc7uXhrECUhpRSlGgVTegDaBZHQJx4O4y44Id1fZQoaAZoCWgPQwgKvmn6BDCtQJSGlFKUaBVN6ANoFkdAnKBoxL0z03V9lChoBmgJaA9DCKVN1T1qVKVAlIaUUpRoFU23AmgWR0CcozSTyJ9BdX2UKGgGaAloD0MIjup0IMOhrUCUhpRSlGgVTegDaBZHQJynY4tHxz91fZQoaAZoCWgPQwgLRiV1Yq2YQJSGlFKUaBVNnwFoFkdAnK0kYTCcgHV9lChoBmgJaA9DCLIQHQK3uJlAlIaUUpRoFU3BAWgWR0CcrwgQHzH0dX2UKGgGaAloD0MIs2Dij4rMrUCUhpRSlGgVTegDaBZHQJyzNQvYe1d1fZQoaAZoCWgPQwjwwADCl12lQJSGlFKUaBVNpgJoFkdAnLoP2wmmcnV9lChoBmgJaA9DCDZZox665KxAlIaUUpRoFU3oA2gWR0CcviNhE0BPdX2UKGgGaAloD0MIw9MrZbEqrUCUhpRSlGgVTegDaBZHQJzGFfsu3+d1fZQoaAZoCWgPQwgurBvvdj6oQJSGlFKUaBVNBwNoFkdAnMkubI91U3V9lChoBmgJaA9DCFaBWgzmTK1AlIaUUpRoFU3oA2gWR0Cc0VT3Zf2LdX2UKGgGaAloD0MIKH0h5Axdl0CUhpRSlGgVTZEBaBZHQJzS55rxiG51fZQoaAZoCWgPQwih20sao3StQJSGlFKUaBVN6ANoFkdAnNazJZGKAXV9lChoBmgJaA9DCCB6UialW6ZAlIaUUpRoFU3CAmgWR0Cc/sWEsasIdX2UKGgGaAloD0MI95DwvT85rECUhpRSlGgVTegDaBZHQJ0DAk6cRUZ1fZQoaAZoCWgPQwihL739oQiuQJSGlFKUaBVN6ANoFkdAnQsX0kGA1HV9lChoBmgJaA9DCETdByDtZa5AlIaUUpRoFU3oA2gWR0CdDu4keIVNdX2UKGgGaAloD0MI5QzFHXcUrkCUhpRSlGgVTegDaBZHQJ0WEnkT6BR1fZQoaAZoCWgPQwgcBvNXCKibQJSGlFKUaBVNxwFoFkdAnRe4ao/A03V9lChoBmgJaA9DCCKoGr0CL61AlIaUUpRoFU3oA2gWR0CdG8KQq7ROdX2UKGgGaAloD0MI/b/qyKH/l0CUhpRSlGgVTZsBaBZHQJ0ddqVQhwF1fZQoaAZoCWgPQwiwcJLm30+tQJSGlFKUaBVN6ANoFkdAnSUgh4dIXnV9lChoBmgJaA9DCHPyIhOg4KlAlIaUUpRoFU1TA2gWR0CdKIqEOAiFdX2UKGgGaAloD0MI5eyd0Y46rkCUhpRSlGgVTegDaBZHQJ0wmz9jwx51fZQoaAZoCWgPQwjlm21unBCfQJSGlFKUaBVNBQJoFkdAnTLPkvK2a3V9lChoBmgJaA9DCP7tsl+P0K1AlIaUUpRoFU3BA2gWR0CdWhh86V+rdX2UKGgGaAloD0MIu9HHfGCDmkCUhpRSlGgVTbMBaBZHQJ1bqwdKdx11fZQoaAZoCWgPQwjRWtHm+DStQJSGlFKUaBVN6ANoFkdAnV9jlxOtXHV9lChoBmgJaA9DCFMj9DMN7qxAlIaUUpRoFU3oA2gWR0CdZw3JPqLTdX2UKGgGaAloD0MI2VvK+XrerUCUhpRSlGgVTegDaBZHQJ1qwkY4yXV1fZQoaAZoCWgPQwi2ErpLGmimQJSGlFKUaBVNwQJoFkdAnXEZKBd2PnV9lChoBmgJaA9DCCFzZVCdU65AlIaUUpRoFU3oA2gWR0CddSBNEgGKdX2UKGgGaAloD0MItaZ5x7HArECUhpRSlGgVTegDaBZHQJ19PqFAVwh1fZQoaAZoCWgPQwgcQwBwDOigQJSGlFKUaBVNMwJoFkdAnX+Ru4wyqXV9lChoBmgJaA9DCNdnzvoUr49AlIaUUpRoFU0iAWgWR0CdgMRLK3d9dX2UKGgGaAloD0MIfO9v0M6srUCUhpRSlGgVTegDaBZHQJ2Ercxj8UF1fZQoaAZoCWgPQwhCBYcXVDevQJSGlFKUaBVN6ANoFkdAnYy/0qYqonV9lChoBmgJaA9DCLWlDvLSAK5AlIaUUpRoFU3oA2gWR0CdsPvB7/n4dX2UKGgGaAloD0MI3o/bL4+Nq0CUhpRSlGgVTZEDaBZHQJ24gFvAGjd1fZQoaAZoCWgPQwgRkC+hwrGtQJSGlFKUaBVNmwNoFkdAnbuvnGKhtnV9lChoBmgJaA9DCKJFtvNtapdAlIaUUpRoFU18AWgWR0CdwQwJPZZkdX2UKGgGaAloD0MI3st9cqzEqUCUhpRSlGgVTUADaBZHQJ3EVmYjSoh1fZQoaAZoCWgPQwgMAiuHdkKKQJSGlFKUaBVL5GgWR0CdxUUaAFxGdX2UKGgGaAloD0MIwsBz76l6rECUhpRSlGgVTegDaBZHQJ3M+08eS0V1fZQoaAZoCWgPQwitbYrHpbiuQJSGlFKUaBVN6ANoFkdAndEWKMvRJHV9lChoBmgJaA9DCDUJ3pBG4atAlIaUUpRoFU3oA2gWR0Cd2MJk5IYndX2UKGgGaAloD0MIm3KFd2HkrECUhpRSlGgVTegDaBZHQJ3c2xxDLKV1fZQoaAZoCWgPQwiY+nlTQfmtQJSGlFKUaBVN6ANoFkdAneEKreZXuHV9lChoBmgJaA9DCAHAsWefKq9AlIaUUpRoFU3oA2gWR0Cd6TG7SRbKdX2UKGgGaAloD0MI4nZoWGyfoECUhpRSlGgVTSACaBZHQJ4LDiJfpll1fZQoaAZoCWgPQwigibDhsQauQJSGlFKUaBVN6ANoFkdAnhM/+0gKW3V9lChoBmgJaA9DCBAlWvJwRa5AlIaUUpRoFU3oA2gWR0CeF3xbB42TdX2UKGgGaAloD0MIh2u1h8WXrECUhpRSlGgVTegDaBZHQJ4fYNBnjAB1fZQoaAZoCWgPQwh2cRsNuO+oQJSGlFKUaBVNHgNoFkdAniKWBvrGBHV9lChoBmgJaA9DCF67tOFQa6xAlIaUUpRoFU3oA2gWR0CeKmJQcghbdX2UKGgGaAloD0MI+gs9YlSprkCUhpRSlGgVTegDaBZHQJ4uUr08NhF1fZQoaAZoCWgPQwi9N4YA6DWvQJSGlFKUaBVN6ANoFkdAnjYXFxXGO3V9lChoBmgJaA9DCASRRZqAK65AlIaUUpRoFU3oA2gWR0CeOgJD3M6jdX2UKGgGaAloD0MIdLM/UP7ErUCUhpRSlGgVTegDaBZHQJ5BvLJSzgN1fZQoaAZoCWgPQwhz8iITsBWrQJSGlFKUaBVNeQNoFkdAnkUt0mtyP3V9lChoBmgJaA9DCJBPyM4T/q5AlIaUUpRoFU3oA2gWR0CeZpYGt6omdX2UKGgGaAloD0MIq5MzFDdTdkCUhpRSlGgVS3xoFkdAnmpzIikftHV9lChoBmgJaA9DCGhcOBDKWK9AlIaUUpRoFU3oA2gWR0Cebh7IkqtpdX2UKGgGaAloD0MIDhDM0Tv7pkCUhpRSlGgVTckCaBZHQJ5wwuqWC3B1fZQoaAZoCWgPQwgFUfcBEDKtQJSGlFKUaBVN6ANoFkdAnngifUWl/HV9lChoBmgJaA9DCD1GeebVcKhAlIaUUpRoFU0HA2gWR0Ceewm4iHIqdX2UKGgGaAloD0MIz6Pi/07KlkCUhpRSlGgVTXUBaBZHQJ58bwnYxtZ1fZQoaAZoCWgPQwjqBDQRpnqhQJSGlFKUaBVNMQJoFkdAnoIiJbdJrnV9lChoBmgJaA9DCB9JSQ97ca1AlIaUUpRoFU3oA2gWR0Cehb4zJp35dX2UKGgGaAloD0MIQiECDqHaWECUhpRSlGgVSzloFkdAnoX1WjoIOnV9lChoBmgJaA9DCKAYWTJXzJ5AlIaUUpRoFU0GAmgWR0Ceh9zgMtsfdX2UKGgGaAloD0MIC5jArQNcrUCUhpRSlGgVTegDaBZHQJ6PYvh60IF1fZQoaAZoCWgPQwj61LFKaWCPQJSGlFKUaBVNEAFoFkdAnpBeqzZ6EHV9lChoBmgJaA9DCOT1YFJMOqtAlIaUUpRoFU13A2gWR0CelxRXwLE2dX2UKGgGaAloD0MIWikEcom6j0CUhpRSlGgVTRsBaBZHQJ6YHDJlrdp1fZQoaAZoCWgPQwj8q8d9E5GtQJSGlFKUaBVN6ANoFkdAnrUxN7BwdnV9lChoBmgJaA9DCJ4GDJLWu65AlIaUUpRoFU3oA2gWR0CevNVnVXmvdX2UKGgGaAloD0MIFytqMMV+pUCUhpRSlGgVTaUCaBZHQJ6/WLxZuAJ1fZQoaAZoCWgPQwgzUYTU7UdaQJSGlFKUaBVLOmgWR0Cev5CQcPvsdX2UKGgGaAloD0MII0kQrsjMrUCUhpRSlGgVTegDaBZHQJ7DVSuQp4N1fZQoaAZoCWgPQwiE2JlCx16ZQJSGlFKUaBVNngFoFkdAnskBri2lVXV9lChoBmgJaA9DCDtu+N0E2J5AlIaUUpRoFU3rAWgWR0Ceyu08/2TQdX2UKGgGaAloD0MIKNNocuFVq0CUhpRSlGgVTVMDaBZHQJ7OOq1gH/t1fZQoaAZoCWgPQwiLcJNR7VGvQJSGlFKUaBVN6ANoFkdAntY6hHskZHV9lChoBmgJaA9DCCeloNvLQZRAlIaUUpRoFU1PAWgWR0Ce13pBomG/dX2UKGgGaAloD0MILZPheF7VqUCUhpRSlGgVTS4DaBZHQJ7adxbSqlx1fZQoaAZoCWgPQwhHqu/8YsCtQJSGlFKUaBVNugNoFkdAnuGuIInjQ3V9lChoBmgJaA9DCDOmYI0Dt6RAlIaUUpRoFU2hAmgWR0Ce5D+b3Gn5dX2UKGgGaAloD0MIXhJnRdSCX0CUhpRSlGgVSz9oFkdAnuR9HpbD/HV9lChoBmgJaA9DCCpTzEFYA69AlIaUUpRoFU3oA2gWR0Ce7CGgzxgBdX2UKGgGaAloD0MIuFonLl+Tr0CUhpRSlGgVTegDaBZHQJ8PJxo7FKl1fZQoaAZoCWgPQwiVgm4vqemAQJSGlFKUaBVLqGgWR0CfD9+Vkc0cdWUu"
|
78 |
+
},
|
79 |
+
"ep_success_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
82 |
+
},
|
83 |
+
"_n_updates": 4890,
|
84 |
+
"n_steps": 2048,
|
85 |
+
"gamma": 0.99,
|
86 |
+
"gae_lambda": 0.95,
|
87 |
+
"ent_coef": 0.0,
|
88 |
+
"vf_coef": 0.5,
|
89 |
+
"max_grad_norm": 0.5,
|
90 |
+
"batch_size": 64,
|
91 |
+
"n_epochs": 10,
|
92 |
+
"clip_range": {
|
93 |
+
":type:": "<class 'function'>",
|
94 |
+
":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
95 |
+
},
|
96 |
+
"clip_range_vf": null,
|
97 |
+
"normalize_advantage": true,
|
98 |
+
"target_kl": null
|
99 |
+
}
|
ppo-Walker2d-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f88cb9609bc833ad0d107a2cae99e013f4df077ba48cbe82bf350061c1cf28f1
|
3 |
+
size 96663
|
ppo-Walker2d-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1bb47398269d55d54d7e0a82d500d2a6a2be26910e52167d4c0180554421b7d
|
3 |
+
size 49150
|
ppo-Walker2d-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-Walker2d-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1e0b5309574bd9f8db43c3dfd00679e3d3a8e95dc4a4a6347fcf218471da17f
|
3 |
+
size 1420557
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 3571.7363579000003, "std_reward": 807.7467430734971, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T13:17:41.602259"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a3c99673c2320d722ef5cff010e66e2697dae3d7a316532c2004a65395dc4c5
|
3 |
+
size 119131
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6a24f94a15be3eccb1ec0014e6737b5cbf024085abe3a5818b3580edc22d61b
|
3 |
+
size 4982
|