araffin commited on
Commit
b1eb204
1 Parent(s): 61877ba

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
29
+ vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Walker2d-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 3571.74 +/- 807.75
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: Walker2d-v3
20
+ type: Walker2d-v3
21
+ ---
22
+
23
+ # **PPO** Agent playing **Walker2d-v3**
24
+ This is a trained model of a **PPO** agent playing **Walker2d-v3**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo ppo --env Walker2d-v3 -orga sb3 -f logs/
41
+ python enjoy.py --algo ppo --env Walker2d-v3 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo ppo --env Walker2d-v3 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo ppo --env Walker2d-v3 -f logs/ -orga sb3
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'),
54
+ ('n_timesteps', 1000000.0),
55
+ ('normalize', True),
56
+ ('policy', 'MlpPolicy'),
57
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
58
+ ```
args.yml ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - env
5
+ - Walker2d-v3
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 20
10
+ - - eval_freq
11
+ - 10000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - null
16
+ - - log_folder
17
+ - logs/
18
+ - - log_interval
19
+ - 10
20
+ - - n_eval_envs
21
+ - 5
22
+ - - n_evaluations
23
+ - 20
24
+ - - n_jobs
25
+ - 1
26
+ - - n_startup_trials
27
+ - 10
28
+ - - n_timesteps
29
+ - -1
30
+ - - n_trials
31
+ - 10
32
+ - - no_optim_plots
33
+ - false
34
+ - - num_threads
35
+ - 2
36
+ - - optimization_log_path
37
+ - null
38
+ - - optimize_hyperparameters
39
+ - false
40
+ - - pruner
41
+ - median
42
+ - - sampler
43
+ - tpe
44
+ - - save_freq
45
+ - -1
46
+ - - save_replay_buffer
47
+ - false
48
+ - - seed
49
+ - 594371
50
+ - - storage
51
+ - null
52
+ - - study_name
53
+ - null
54
+ - - tensorboard_log
55
+ - ''
56
+ - - trained_agent
57
+ - ''
58
+ - - truncate_last_trajectory
59
+ - true
60
+ - - uuid
61
+ - true
62
+ - - vec_env
63
+ - dummy
64
+ - - verbose
65
+ - 1
config.yml ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - env_wrapper
3
+ - sb3_contrib.common.wrappers.TimeFeatureWrapper
4
+ - - n_timesteps
5
+ - 1000000.0
6
+ - - normalize
7
+ - true
8
+ - - policy
9
+ - MlpPolicy
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
ppo-Walker2d-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75988071445692995cc4ad31571b6e2b560a0db6622f38ab6fae814ed1ae91a1
3
+ size 166045
ppo-Walker2d-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
ppo-Walker2d-v3/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f086b69a950>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f086b69a9e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f086b69aa70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f086b69ab00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f086b69ab90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f086b69ac20>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f086b69acb0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f086b69ad40>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f086b69add0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f086b69ae60>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f086b69aef0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f086b6eb840>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gASVJwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxKFlGgKiUNIAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAAAAlHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsShZRoColDSAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLEoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxIAAAAAAAAAAAAAAAAAAAAAAAGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSxKFlGgoiUMSAAAAAAAAAAAAAAAAAAAAAAABlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSxKFlHViLg==",
26
+ "dtype": "float32",
27
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf 0.]",
28
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf 1.]",
29
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False True]",
30
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False True]",
31
+ "_np_random": null,
32
+ "_shape": [
33
+ 18
34
+ ]
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.box.Box'>",
38
+ ":serialized:": "gASVPwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwaFlGgKiUMYAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsGhZRoColDGAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLBoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwYBAQEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwaFlGgoiUMGAQEBAQEBlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDiMBXN0YXRllH2UKIwDa2V5lGgQaBJLAIWUaBSHlFKUKEsBTXAChZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGKJQsAJAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUdJRijANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YowGX3NoYXBllEsGhZR1Yi4=",
39
+ "dtype": "float32",
40
+ "low": "[-1. -1. -1. -1. -1. -1.]",
41
+ "high": "[1. 1. 1. 1. 1. 1.]",
42
+ "bounded_below": "[ True True True True True True]",
43
+ "bounded_above": "[ True True True True True True]",
44
+ "_np_random": "RandomState(MT19937)",
45
+ "_shape": [
46
+ 6
47
+ ]
48
+ },
49
+ "n_envs": 1,
50
+ "num_timesteps": 1001472,
51
+ "_total_timesteps": 1000000,
52
+ "_num_timesteps_at_start": 0,
53
+ "seed": 0,
54
+ "action_noise": null,
55
+ "start_time": 1635497834.165473,
56
+ "learning_rate": 0.0003,
57
+ "tensorboard_log": null,
58
+ "lr_schedule": {
59
+ ":type:": "<class 'function'>",
60
+ ":serialized:": "gASVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
61
+ },
62
+ "_last_obs": null,
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'numpy.ndarray'>",
69
+ ":serialized:": "gASV0gAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLEoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUNIIjigP3mN+bmKzyc7suyYO4j7zLrsq9Y6CUQ7O1OltLp0nMe6UVAwOUBD0rqoQ+A6FO4WO45FkrsCq3A7JG6Bu3CWTTsAAIA/lHSUYi4="
70
+ },
71
+ "_episode_num": 0,
72
+ "use_sde": false,
73
+ "sde_sample_freq": -1,
74
+ "_current_progress_remaining": -0.0014719999999999178,
75
+ "ep_info_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gASVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZcVwdcBCoECUhpRSlIwBbJRNJQKMAXSUR0CcUS0lZ5iWdX2UKGgGaAloD0MIFQFO71q4qUCUhpRSlGgVTT0DaBZHQJxUf9l2/zt1fZQoaAZoCWgPQwhfmiLAsXetQJSGlFKUaBVN6ANoFkdAnFy0Sh8IA3V9lChoBmgJaA9DCBPVWwOLWK5AlIaUUpRoFU3oA2gWR0CcYQKmbb1zdX2UKGgGaAloD0MI9Q63QyP4rECUhpRSlGgVTegDaBZHQJxpaT2WY4R1fZQoaAZoCWgPQwicacL2Y+GkQJSGlFKUaBVNwAJoFkdAnGwwP3BYWHV9lChoBmgJaA9DCGAdxw8Fea1AlIaUUpRoFU21A2gWR0CcdCD0UXYUdX2UKGgGaAloD0MIDcLc7uXhrECUhpRSlGgVTegDaBZHQJx4O4y44Id1fZQoaAZoCWgPQwgKvmn6BDCtQJSGlFKUaBVN6ANoFkdAnKBoxL0z03V9lChoBmgJaA9DCKVN1T1qVKVAlIaUUpRoFU23AmgWR0CcozSTyJ9BdX2UKGgGaAloD0MIjup0IMOhrUCUhpRSlGgVTegDaBZHQJynY4tHxz91fZQoaAZoCWgPQwgLRiV1Yq2YQJSGlFKUaBVNnwFoFkdAnK0kYTCcgHV9lChoBmgJaA9DCLIQHQK3uJlAlIaUUpRoFU3BAWgWR0CcrwgQHzH0dX2UKGgGaAloD0MIs2Dij4rMrUCUhpRSlGgVTegDaBZHQJyzNQvYe1d1fZQoaAZoCWgPQwjwwADCl12lQJSGlFKUaBVNpgJoFkdAnLoP2wmmcnV9lChoBmgJaA9DCDZZox665KxAlIaUUpRoFU3oA2gWR0CcviNhE0BPdX2UKGgGaAloD0MIw9MrZbEqrUCUhpRSlGgVTegDaBZHQJzGFfsu3+d1fZQoaAZoCWgPQwgurBvvdj6oQJSGlFKUaBVNBwNoFkdAnMkubI91U3V9lChoBmgJaA9DCFaBWgzmTK1AlIaUUpRoFU3oA2gWR0Cc0VT3Zf2LdX2UKGgGaAloD0MIKH0h5Axdl0CUhpRSlGgVTZEBaBZHQJzS55rxiG51fZQoaAZoCWgPQwih20sao3StQJSGlFKUaBVN6ANoFkdAnNazJZGKAXV9lChoBmgJaA9DCCB6UialW6ZAlIaUUpRoFU3CAmgWR0Cc/sWEsasIdX2UKGgGaAloD0MI95DwvT85rECUhpRSlGgVTegDaBZHQJ0DAk6cRUZ1fZQoaAZoCWgPQwihL739oQiuQJSGlFKUaBVN6ANoFkdAnQsX0kGA1HV9lChoBmgJaA9DCETdByDtZa5AlIaUUpRoFU3oA2gWR0CdDu4keIVNdX2UKGgGaAloD0MI5QzFHXcUrkCUhpRSlGgVTegDaBZHQJ0WEnkT6BR1fZQoaAZoCWgPQwgcBvNXCKibQJSGlFKUaBVNxwFoFkdAnRe4ao/A03V9lChoBmgJaA9DCCKoGr0CL61AlIaUUpRoFU3oA2gWR0CdG8KQq7ROdX2UKGgGaAloD0MI/b/qyKH/l0CUhpRSlGgVTZsBaBZHQJ0ddqVQhwF1fZQoaAZoCWgPQwiwcJLm30+tQJSGlFKUaBVN6ANoFkdAnSUgh4dIXnV9lChoBmgJaA9DCHPyIhOg4KlAlIaUUpRoFU1TA2gWR0CdKIqEOAiFdX2UKGgGaAloD0MI5eyd0Y46rkCUhpRSlGgVTegDaBZHQJ0wmz9jwx51fZQoaAZoCWgPQwjlm21unBCfQJSGlFKUaBVNBQJoFkdAnTLPkvK2a3V9lChoBmgJaA9DCP7tsl+P0K1AlIaUUpRoFU3BA2gWR0CdWhh86V+rdX2UKGgGaAloD0MIu9HHfGCDmkCUhpRSlGgVTbMBaBZHQJ1bqwdKdx11fZQoaAZoCWgPQwjRWtHm+DStQJSGlFKUaBVN6ANoFkdAnV9jlxOtXHV9lChoBmgJaA9DCFMj9DMN7qxAlIaUUpRoFU3oA2gWR0CdZw3JPqLTdX2UKGgGaAloD0MI2VvK+XrerUCUhpRSlGgVTegDaBZHQJ1qwkY4yXV1fZQoaAZoCWgPQwi2ErpLGmimQJSGlFKUaBVNwQJoFkdAnXEZKBd2PnV9lChoBmgJaA9DCCFzZVCdU65AlIaUUpRoFU3oA2gWR0CddSBNEgGKdX2UKGgGaAloD0MItaZ5x7HArECUhpRSlGgVTegDaBZHQJ19PqFAVwh1fZQoaAZoCWgPQwgcQwBwDOigQJSGlFKUaBVNMwJoFkdAnX+Ru4wyqXV9lChoBmgJaA9DCNdnzvoUr49AlIaUUpRoFU0iAWgWR0CdgMRLK3d9dX2UKGgGaAloD0MIfO9v0M6srUCUhpRSlGgVTegDaBZHQJ2Ercxj8UF1fZQoaAZoCWgPQwhCBYcXVDevQJSGlFKUaBVN6ANoFkdAnYy/0qYqonV9lChoBmgJaA9DCLWlDvLSAK5AlIaUUpRoFU3oA2gWR0CdsPvB7/n4dX2UKGgGaAloD0MI3o/bL4+Nq0CUhpRSlGgVTZEDaBZHQJ24gFvAGjd1fZQoaAZoCWgPQwgRkC+hwrGtQJSGlFKUaBVNmwNoFkdAnbuvnGKhtnV9lChoBmgJaA9DCKJFtvNtapdAlIaUUpRoFU18AWgWR0CdwQwJPZZkdX2UKGgGaAloD0MI3st9cqzEqUCUhpRSlGgVTUADaBZHQJ3EVmYjSoh1fZQoaAZoCWgPQwgMAiuHdkKKQJSGlFKUaBVL5GgWR0CdxUUaAFxGdX2UKGgGaAloD0MIwsBz76l6rECUhpRSlGgVTegDaBZHQJ3M+08eS0V1fZQoaAZoCWgPQwitbYrHpbiuQJSGlFKUaBVN6ANoFkdAndEWKMvRJHV9lChoBmgJaA9DCDUJ3pBG4atAlIaUUpRoFU3oA2gWR0Cd2MJk5IYndX2UKGgGaAloD0MIm3KFd2HkrECUhpRSlGgVTegDaBZHQJ3c2xxDLKV1fZQoaAZoCWgPQwiY+nlTQfmtQJSGlFKUaBVN6ANoFkdAneEKreZXuHV9lChoBmgJaA9DCAHAsWefKq9AlIaUUpRoFU3oA2gWR0Cd6TG7SRbKdX2UKGgGaAloD0MI4nZoWGyfoECUhpRSlGgVTSACaBZHQJ4LDiJfpll1fZQoaAZoCWgPQwigibDhsQauQJSGlFKUaBVN6ANoFkdAnhM/+0gKW3V9lChoBmgJaA9DCBAlWvJwRa5AlIaUUpRoFU3oA2gWR0CeF3xbB42TdX2UKGgGaAloD0MIh2u1h8WXrECUhpRSlGgVTegDaBZHQJ4fYNBnjAB1fZQoaAZoCWgPQwh2cRsNuO+oQJSGlFKUaBVNHgNoFkdAniKWBvrGBHV9lChoBmgJaA9DCF67tOFQa6xAlIaUUpRoFU3oA2gWR0CeKmJQcghbdX2UKGgGaAloD0MI+gs9YlSprkCUhpRSlGgVTegDaBZHQJ4uUr08NhF1fZQoaAZoCWgPQwi9N4YA6DWvQJSGlFKUaBVN6ANoFkdAnjYXFxXGO3V9lChoBmgJaA9DCASRRZqAK65AlIaUUpRoFU3oA2gWR0CeOgJD3M6jdX2UKGgGaAloD0MIdLM/UP7ErUCUhpRSlGgVTegDaBZHQJ5BvLJSzgN1fZQoaAZoCWgPQwhz8iITsBWrQJSGlFKUaBVNeQNoFkdAnkUt0mtyP3V9lChoBmgJaA9DCJBPyM4T/q5AlIaUUpRoFU3oA2gWR0CeZpYGt6omdX2UKGgGaAloD0MIq5MzFDdTdkCUhpRSlGgVS3xoFkdAnmpzIikftHV9lChoBmgJaA9DCGhcOBDKWK9AlIaUUpRoFU3oA2gWR0Cebh7IkqtpdX2UKGgGaAloD0MIDhDM0Tv7pkCUhpRSlGgVTckCaBZHQJ5wwuqWC3B1fZQoaAZoCWgPQwgFUfcBEDKtQJSGlFKUaBVN6ANoFkdAnngifUWl/HV9lChoBmgJaA9DCD1GeebVcKhAlIaUUpRoFU0HA2gWR0Ceewm4iHIqdX2UKGgGaAloD0MIz6Pi/07KlkCUhpRSlGgVTXUBaBZHQJ58bwnYxtZ1fZQoaAZoCWgPQwjqBDQRpnqhQJSGlFKUaBVNMQJoFkdAnoIiJbdJrnV9lChoBmgJaA9DCB9JSQ97ca1AlIaUUpRoFU3oA2gWR0Cehb4zJp35dX2UKGgGaAloD0MIQiECDqHaWECUhpRSlGgVSzloFkdAnoX1WjoIOnV9lChoBmgJaA9DCKAYWTJXzJ5AlIaUUpRoFU0GAmgWR0Ceh9zgMtsfdX2UKGgGaAloD0MIC5jArQNcrUCUhpRSlGgVTegDaBZHQJ6PYvh60IF1fZQoaAZoCWgPQwj61LFKaWCPQJSGlFKUaBVNEAFoFkdAnpBeqzZ6EHV9lChoBmgJaA9DCOT1YFJMOqtAlIaUUpRoFU13A2gWR0CelxRXwLE2dX2UKGgGaAloD0MIWikEcom6j0CUhpRSlGgVTRsBaBZHQJ6YHDJlrdp1fZQoaAZoCWgPQwj8q8d9E5GtQJSGlFKUaBVN6ANoFkdAnrUxN7BwdnV9lChoBmgJaA9DCJ4GDJLWu65AlIaUUpRoFU3oA2gWR0CevNVnVXmvdX2UKGgGaAloD0MIFytqMMV+pUCUhpRSlGgVTaUCaBZHQJ6/WLxZuAJ1fZQoaAZoCWgPQwgzUYTU7UdaQJSGlFKUaBVLOmgWR0Cev5CQcPvsdX2UKGgGaAloD0MII0kQrsjMrUCUhpRSlGgVTegDaBZHQJ7DVSuQp4N1fZQoaAZoCWgPQwiE2JlCx16ZQJSGlFKUaBVNngFoFkdAnskBri2lVXV9lChoBmgJaA9DCDtu+N0E2J5AlIaUUpRoFU3rAWgWR0Ceyu08/2TQdX2UKGgGaAloD0MIKNNocuFVq0CUhpRSlGgVTVMDaBZHQJ7OOq1gH/t1fZQoaAZoCWgPQwiLcJNR7VGvQJSGlFKUaBVN6ANoFkdAntY6hHskZHV9lChoBmgJaA9DCCeloNvLQZRAlIaUUpRoFU1PAWgWR0Ce13pBomG/dX2UKGgGaAloD0MILZPheF7VqUCUhpRSlGgVTS4DaBZHQJ7adxbSqlx1fZQoaAZoCWgPQwhHqu/8YsCtQJSGlFKUaBVNugNoFkdAnuGuIInjQ3V9lChoBmgJaA9DCDOmYI0Dt6RAlIaUUpRoFU2hAmgWR0Ce5D+b3Gn5dX2UKGgGaAloD0MIXhJnRdSCX0CUhpRSlGgVSz9oFkdAnuR9HpbD/HV9lChoBmgJaA9DCCpTzEFYA69AlIaUUpRoFU3oA2gWR0Ce7CGgzxgBdX2UKGgGaAloD0MIuFonLl+Tr0CUhpRSlGgVTegDaBZHQJ8PJxo7FKl1fZQoaAZoCWgPQwiVgm4vqemAQJSGlFKUaBVLqGgWR0CfD9+Vkc0cdWUu"
78
+ },
79
+ "ep_success_buffer": {
80
+ ":type:": "<class 'collections.deque'>",
81
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
82
+ },
83
+ "_n_updates": 4890,
84
+ "n_steps": 2048,
85
+ "gamma": 0.99,
86
+ "gae_lambda": 0.95,
87
+ "ent_coef": 0.0,
88
+ "vf_coef": 0.5,
89
+ "max_grad_norm": 0.5,
90
+ "batch_size": 64,
91
+ "n_epochs": 10,
92
+ "clip_range": {
93
+ ":type:": "<class 'function'>",
94
+ ":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
95
+ },
96
+ "clip_range_vf": null,
97
+ "normalize_advantage": true,
98
+ "target_kl": null
99
+ }
ppo-Walker2d-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f88cb9609bc833ad0d107a2cae99e013f4df077ba48cbe82bf350061c1cf28f1
3
+ size 96663
ppo-Walker2d-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1bb47398269d55d54d7e0a82d500d2a6a2be26910e52167d4c0180554421b7d
3
+ size 49150
ppo-Walker2d-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-Walker2d-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
2
+ Python: 3.7.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.2
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1e0b5309574bd9f8db43c3dfd00679e3d3a8e95dc4a4a6347fcf218471da17f
3
+ size 1420557
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 3571.7363579000003, "std_reward": 807.7467430734971, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T13:17:41.602259"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a3c99673c2320d722ef5cff010e66e2697dae3d7a316532c2004a65395dc4c5
3
+ size 119131
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6a24f94a15be3eccb1ec0014e6737b5cbf024085abe3a5818b3580edc22d61b
3
+ size 4982