araffin commited on
Commit
c0d9e5a
1 Parent(s): f7f1411

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Hopper-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TD3
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 3604.63 +/- 4.84
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: Hopper-v3
20
+ type: Hopper-v3
21
+ ---
22
+
23
+ # **TD3** Agent playing **Hopper-v3**
24
+ This is a trained model of a **TD3** agent playing **Hopper-v3**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo td3 --env Hopper-v3 -orga sb3 -f logs/
41
+ python enjoy.py --algo td3 --env Hopper-v3 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo td3 --env Hopper-v3 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo td3 --env Hopper-v3 -f logs/ -orga sb3
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('batch_size', 256),
54
+ ('gradient_steps', 1),
55
+ ('learning_rate', 0.0003),
56
+ ('learning_starts', 10000),
57
+ ('n_timesteps', 1000000.0),
58
+ ('policy', 'MlpPolicy'),
59
+ ('train_freq', 1),
60
+ ('normalize', False)])
61
+ ```
args.yml ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - td3
4
+ - - env
5
+ - Hopper-v3
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 20
10
+ - - eval_freq
11
+ - 25000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - null
16
+ - - log_folder
17
+ - logs/hyperparam_sac/
18
+ - - log_interval
19
+ - 10
20
+ - - n_eval_envs
21
+ - 5
22
+ - - n_evaluations
23
+ - 20
24
+ - - n_jobs
25
+ - 1
26
+ - - n_startup_trials
27
+ - 10
28
+ - - n_timesteps
29
+ - -1
30
+ - - n_trials
31
+ - 10
32
+ - - no_optim_plots
33
+ - false
34
+ - - num_threads
35
+ - 2
36
+ - - optimization_log_path
37
+ - null
38
+ - - optimize_hyperparameters
39
+ - false
40
+ - - pruner
41
+ - median
42
+ - - sampler
43
+ - tpe
44
+ - - save_freq
45
+ - -1
46
+ - - save_replay_buffer
47
+ - false
48
+ - - seed
49
+ - 594371
50
+ - - storage
51
+ - null
52
+ - - study_name
53
+ - null
54
+ - - tensorboard_log
55
+ - ''
56
+ - - trained_agent
57
+ - ''
58
+ - - truncate_last_trajectory
59
+ - true
60
+ - - uuid
61
+ - true
62
+ - - vec_env
63
+ - dummy
64
+ - - verbose
65
+ - 1
config.yml ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 256
4
+ - - gradient_steps
5
+ - 1
6
+ - - learning_rate
7
+ - 0.0003
8
+ - - learning_starts
9
+ - 10000
10
+ - - n_timesteps
11
+ - 1000000.0
12
+ - - policy
13
+ - MlpPolicy
14
+ - - train_freq
15
+ - 1
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2dad40f40f2f6226e4fa6cccae37d48d8e0e47401728cf1260e077cf06a22e96
3
+ size 1690397
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 3604.6309737999995, "std_reward": 4.843500921814279, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T15:05:49.492653"}
td3-Hopper-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:485b7c8f76dac287a19338604d0f40913a74928cee5ffa42775993ae45ac241e
3
+ size 6110039
td3-Hopper-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
td3-Hopper-v3/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81cea86b09e63dea606108b6a0056273110fd6e2034d853207b4efc156eee0e3
3
+ size 1011393
td3-Hopper-v3/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64629f6d8758a28e1aac121ef549b77fa8896b8e3f5d656d959c509633f956f6
3
+ size 2032029
td3-Hopper-v3/data ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TD3Policy.__init__ at 0x7fc005f91170>",
8
+ "_build": "<function TD3Policy._build at 0x7fc005f91200>",
9
+ "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7fc005f91290>",
10
+ "make_actor": "<function TD3Policy.make_actor at 0x7fc005f91320>",
11
+ "make_critic": "<function TD3Policy.make_critic at 0x7fc005f913b0>",
12
+ "forward": "<function TD3Policy.forward at 0x7fc005f91440>",
13
+ "_predict": "<function TD3Policy._predict at 0x7fc005f914d0>",
14
+ "set_training_mode": "<function TD3Policy.set_training_mode at 0x7fc005f91560>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc_data object at 0x7fc005f8f1e0>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {},
20
+ "observation_space": {
21
+ ":type:": "<class 'gym.spaces.box.Box'>",
22
+ ":serialized:": "gASVOQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwuFlGgKiUNYAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5R0lGKMBGhpZ2iUaBBoEksAhZRoFIeUUpQoSwFLC4WUaAqJQ1gAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/lHSUYowNYm91bmRlZF9iZWxvd5RoEGgSSwCFlGgUh5RSlChLAUsLhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCwAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEGgSSwCFlGgUh5RSlChLAUsLhZRoKIlDCwAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSwuFlHViLg==",
23
+ "dtype": "float64",
24
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
25
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf]",
26
+ "bounded_below": "[False False False False False False False False False False False]",
27
+ "bounded_above": "[False False False False False False False False False False False]",
28
+ "_np_random": null,
29
+ "_shape": [
30
+ 11
31
+ ]
32
+ },
33
+ "action_space": {
34
+ ":type:": "<class 'gym.spaces.box.Box'>",
35
+ ":serialized:": "gASVIQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwOFlGgKiUMMAACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsDhZRoColDDAAAgD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLA4WUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwMBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwOFlGgoiUMDAQEBlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDiMBXN0YXRllH2UKIwDa2V5lGgQaBJLAIWUaBSHlFKUKEsBTXAChZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGKJQsAJAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUdJRijANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YowGX3NoYXBllEsDhZR1Yi4=",
36
+ "dtype": "float32",
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": "RandomState(MT19937)",
42
+ "_shape": [
43
+ 3
44
+ ]
45
+ },
46
+ "n_envs": 1,
47
+ "num_timesteps": 1000000,
48
+ "_total_timesteps": 1000000,
49
+ "_num_timesteps_at_start": 0,
50
+ "seed": 0,
51
+ "action_noise": null,
52
+ "start_time": 1635507082.554415,
53
+ "learning_rate": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "tensorboard_log": null,
58
+ "lr_schedule": {
59
+ ":type:": "<class 'function'>",
60
+ ":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
61
+ },
62
+ "_last_obs": null,
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRiLg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'numpy.ndarray'>",
69
+ ":serialized:": "gASV4gAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLC4aUaAOMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUNYtHck3Qpe9j/YDVj2+o6ev+CAjMWtHtG/1Bcs16vdeD8lyrBc0R3qPw3bDYR2E/8/Ry+lzo1r8b/RVrCUJlbUP/43PtZN5fw/XD3CZQ+62T90AvamwqLwv5R0lGIu"
70
+ },
71
+ "_episode_num": 2776,
72
+ "use_sde": false,
73
+ "sde_sample_freq": -1,
74
+ "_current_progress_remaining": 0.0,
75
+ "ep_info_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gASVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIs82N6QnQq0CUhpRSlIwBbJRN6AOMAXSUR0C6MbdQwblzdX2UKGgGaAloD0MI1/fhINn6q0CUhpRSlGgVTegDaBZHQLo4vWuHN5d1fZQoaAZoCWgPQwjWOJuOkNGrQJSGlFKUaBVN6ANoFkdAuj/EeLehwnV9lChoBmgJaA9DCKpjldIr/qtAlIaUUpRoFU3oA2gWR0C6RyG3Sa3JdX2UKGgGaAloD0MI/wkuVrwdrECUhpRSlGgVTegDaBZHQLpOk6nR9gF1fZQoaAZoCWgPQwiFzJVBNTVwQJSGlFKUaBVLbWgWR0C6T14CZF5OdX2UKGgGaAloD0MId2aC4UQcrECUhpRSlGgVTegDaBZHQLpWl99MK1J1fZQoaAZoCWgPQwhjfm5osiesQJSGlFKUaBVN6ANoFkdAul2io73fynV9lChoBmgJaA9DCKsi3GRsBqxAlIaUUpRoFU3oA2gWR0C6ZKXSSeRQdX2UKGgGaAloD0MI41KVtuDzq0CUhpRSlGgVTegDaBZHQLpr6X40uUV1fZQoaAZoCWgPQwiSByKLxC2sQJSGlFKUaBVN6ANoFkdAunNNG7SRbXV9lChoBmgJaA9DCFAb1em4OKxAlIaUUpRoFU3oA2gWR0C6erLMPjGUdX2UKGgGaAloD0MIB3qobVswrECUhpRSlGgVTegDaBZHQLqCDAXl8w51fZQoaAZoCWgPQwiGj4gp4SSsQJSGlFKUaBVN6ANoFkdAuolNg4Otn3V9lChoBmgJaA9DCD21+upyO6xAlIaUUpRoFU3oA2gWR0C6kJd3fQ8fdX2UKGgGaAloD0MIaEKTxGI6rECUhpRSlGgVTegDaBZHQLqX3T5O8Ch1fZQoaAZoCWgPQwhGfv0Qo+urQJSGlFKUaBVN6ANoFkdAup9EVYZEUnV9lChoBmgJaA9DCELSp1VE9atAlIaUUpRoFU3oA2gWR0C6ppRt52QodX2UKGgGaAloD0MIFASPb5fUq0CUhpRSlGgVTegDaBZHQLqt7DArQPZ1fZQoaAZoCWgPQwigxOdO6MOrQJSGlFKUaBVN6ANoFkdAurVYxk/bCnV9lChoBmgJaA9DCGnEzD5f06tAlIaUUpRoFU3oA2gWR0C6vI8jJMg2dX2UKGgGaAloD0MInYGRl/0brECUhpRSlGgVTegDaBZHQLrD49uP3i91fZQoaAZoCWgPQwjlYaHWBAysQJSGlFKUaBVN6ANoFkdAussdaV2RrHV9lChoBmgJaA9DCIuIYvIu/6tAlIaUUpRoFU3oA2gWR0C62MD/+85CdX2UKGgGaAloD0MIq3ZNSOvrcECUhpRSlGgVS3NoFkdAutmKvfTCtXV9lChoBmgJaA9DCIY7F0ZC4qtAlIaUUpRoFU3oA2gWR0C64Oc/QjUvdX2UKGgGaAloD0MI/WoOELwTrECUhpRSlGgVTegDaBZHQLrn7njhky11fZQoaAZoCWgPQwg/V1uxLx+gQJSGlFKUaBVNSQJoFkdAuuweCoS+QHV9lChoBmgJaA9DCLqkaruZ26tAlIaUUpRoFU3oA2gWR0C682zo6jnFdX2UKGgGaAloD0MInX+77HcDrECUhpRSlGgVTegDaBZHQLr621IRRMx1fZQoaAZoCWgPQwgIAmTokNarQJSGlFKUaBVN6ANoFkdAuwIPiBGx2XV9lChoBmgJaA9DCJ4pdF6rDqxAlIaUUpRoFU3oA2gWR0C7CQdPYWcjdX2UKGgGaAloD0MI9buwNWPpq0CUhpRSlGgVTegDaBZHQLsP/0cOskp1fZQoaAZoCWgPQwhy/FBpjOSrQJSGlFKUaBVN6ANoFkdAuxdG/nGKh3V9lChoBmgJaA9DCJGZC1z2AaxAlIaUUpRoFU3oA2gWR0C7HrHCCSRsdX2UKGgGaAloD0MILXjRV4j/q0CUhpRSlGgVTegDaBZHQLsmKOOKfnR1fZQoaAZoCWgPQwjy0eKMgfWrQJSGlFKUaBVN6ANoFkdAuy1in1nM+3V9lChoBmgJaA9DCEHWU6uP/KtAlIaUUpRoFU3oA2gWR0C7NMc6aLGadX2UKGgGaAloD0MIPNnNjM7aq0CUhpRSlGgVTegDaBZHQLs73OJ+Dvp1fZQoaAZoCWgPQwgmNh/XzgSsQJSGlFKUaBVN6ANoFkdAu0MfJgb6xnV9lChoBmgJaA9DCPVjk/yAxqtAlIaUUpRoFU3oA2gWR0C7SlOzdDYzdX2UKGgGaAloD0MI8fRKWRb/q0CUhpRSlGgVTegDaBZHQLtRr33pOet1fZQoaAZoCWgPQwjMXyFzzeSrQJSGlFKUaBVN6ANoFkdAu1kYIa99MXV9lChoBmgJaA9DCEg2V81bA6xAlIaUUpRoFU3oA2gWR0C7YDOcUdq+dX2UKGgGaAloD0MI5q4l5OsFrECUhpRSlGgVTegDaBZHQLtnkWuoxYd1fZQoaAZoCWgPQwgsf74tqAasQJSGlFKUaBVN6ANoFkdAu273Aaef7XV9lChoBmgJaA9DCNYe9kL52KtAlIaUUpRoFU3oA2gWR0C7diyyD7IldX2UKGgGaAloD0MIrfpcbUXvq0CUhpRSlGgVTegDaBZHQLt9e28qWkd1fZQoaAZoCWgPQwiXGwx12OSrQJSGlFKUaBVN6ANoFkdAu4SsduHerXV9lChoBmgJaA9DCKUxWked9KtAlIaUUpRoFU3oA2gWR0C7i7925hBrdX2UKGgGaAloD0MI443MIyf6q0CUhpRSlGgVTegDaBZHQLuZuM495hV1fZQoaAZoCWgPQwg+PbZlCMKrQJSGlFKUaBVN6ANoFkdAu6El+F10T3V9lChoBmgJaA9DCHWuKCVM66tAlIaUUpRoFU3oA2gWR0C7qEoG2TgVdX2UKGgGaAloD0MI9Ib7yOXSq0CUhpRSlGgVTegDaBZHQLuvW5WilBR1fZQoaAZoCWgPQwhIwr6dDK+rQJSGlFKUaBVN6ANoFkdAu7ax5nlGPXV9lChoBmgJaA9DCP7xXrVSDKxAlIaUUpRoFU3oA2gWR0C7vhm38XN1dX2UKGgGaAloD0MIjNe8qnv3q0CUhpRSlGgVTegDaBZHQLvFh8P4EfV1fZQoaAZoCWgPQwiRQ8TN4f2rQJSGlFKUaBVN6ANoFkdAu8yK3I+4b3V9lChoBmgJaA9DCAA49uypBaxAlIaUUpRoFU3oA2gWR0C702tqxkd4dX2UKGgGaAloD0MI24r9Zffvq0CUhpRSlGgVTegDaBZHQLvaeKqXF991fZQoaAZoCWgPQwg/5Zgs9tGrQJSGlFKUaBVN6ANoFkdAu+GGI42jwnV9lChoBmgJaA9DCHGuYYZW3atAlIaUUpRoFU3oA2gWR0C76LOCGvfTdX2UKGgGaAloD0MIZ53xfbkLrECUhpRSlGgVTegDaBZHQLvvqPOY6XB1fZQoaAZoCWgPQwj2fM1y8QCsQJSGlFKUaBVN6ANoFkdAu/bNVzZHu3V9lChoBmgJaA9DCNwQ4zWH+atAlIaUUpRoFU3oA2gWR0C7/h/TLGJfdX2UKGgGaAloD0MIC19f6/Kyq0CUhpRSlGgVTegDaBZHQLwFeVEd/8V1fZQoaAZoCWgPQwhu+N10U8+rQJSGlFKUaBVN6ANoFkdAvAzdDb8FZHV9lChoBmgJaA9DCJmAXyOJpatAlIaUUpRoFU3oA2gWR0C8FCxfnfVJdX2UKGgGaAloD0MIJlEv+IzOq0CUhpRSlGgVTegDaBZHQLwbYRNRFZx1fZQoaAZoCWgPQwgyVwbVfsKrQJSGlFKUaBVN6ANoFkdAvCLP+irT6XV9lChoBmgJaA9DCA6IEFde5qtAlIaUUpRoFU3oA2gWR0C8KfVoQFs6dX2UKGgGaAloD0MIK/cCswLiq0CUhpRSlGgVTegDaBZHQLwxLYRujyp1fZQoaAZoCWgPQwh2NA716/2rQJSGlFKUaBVN6ANoFkdAvDhKpCKJmHV9lChoBmgJaA9DCMxdS8hfvatAlIaUUpRoFU3oA2gWR0C8P0VPi1iOdX2UKGgGaAloD0MIgJpatsb0q0CUhpRSlGgVTegDaBZHQLxGm6fapP11fZQoaAZoCWgPQwhoI9dN8c+rQJSGlFKUaBVN6ANoFkdAvFSKRhc7hnV9lChoBmgJaA9DCFzGTQ1c6KtAlIaUUpRoFU3oA2gWR0C8W8rAk9lmdX2UKGgGaAloD0MIjzS4rdXWq0CUhpRSlGgVTegDaBZHQLxjRcQiA2B1fZQoaAZoCWgPQwgkXwmkXMyrQJSGlFKUaBVN6ANoFkdAvGp0qVhTfnV9lChoBmgJaA9DCPUqMjpo5qtAlIaUUpRoFU3oA2gWR0C8cYQA+6iCdX2UKGgGaAloD0MIQRAgQ8/Uq0CUhpRSlGgVTegDaBZHQLx4bUtqYZ51fZQoaAZoCWgPQwjRsBh1DcOrQJSGlFKUaBVN6ANoFkdAvH+zoNd7fHV9lChoBmgJaA9DCP9dnzkD7qtAlIaUUpRoFU3oA2gWR0C8hyQFHJ9zdX2UKGgGaAloD0MISHAjZXvLq0CUhpRSlGgVTegDaBZHQLyOf6Ae7tl1fZQoaAZoCWgPQwjzkZT0wAKsQJSGlFKUaBVN6ANoFkdAvJWyeBg/knV9lChoBmgJaA9DCFQ6WP8X7atAlIaUUpRoFU3oA2gWR0C8nOqreZXudX2UKGgGaAloD0MImGw82GoKrECUhpRSlGgVTegDaBZHQLykGfJ3gUF1fZQoaAZoCWgPQwhCB13CAeirQJSGlFKUaBVN6ANoFkdAvKs78YQ8OnV9lChoBmgJaA9DCFg4SfM3v6tAlIaUUpRoFU3oA2gWR0C8sqIJNTLodX2UKGgGaAloD0MI5gRtcqAPrECUhpRSlGgVTegDaBZHQLy6BEE1VHZ1fZQoaAZoCWgPQwj0wMdgVS2sQJSGlFKUaBVN6ANoFkdAvMFWzNUwSXV9lChoBmgJaA9DCCwMkdO/GqxAlIaUUpRoFU3oA2gWR0C8yKXxBmf5dX2UKGgGaAloD0MIUmFsIVDAq0CUhpRSlGgVTegDaBZHQLzP60CzTnd1fZQoaAZoCWgPQwizt5Tz5SSsQJSGlFKUaBVN6ANoFkdAvNcOfEn9enV9lChoBmgJaA9DCNQQVfhbAKxAlIaUUpRoFU3oA2gWR0C83kUdJaq0dX2UKGgGaAloD0MI19mQf/Y9rECUhpRSlGgVTegDaBZHQLzlVbfP5YZ1fZQoaAZoCWgPQwiF0axsBw2sQJSGlFKUaBVN6ANoFkdAvOxdeMQ2/HV9lChoBmgJaA9DCMA8ZMqf/atAlIaUUpRoFU3oA2gWR0C884mgOBlMdX2UKGgGaAloD0MIu+1CcwXuq0CUhpRSlGgVTegDaBZHQLz6qVmz0H11fZQoaAZoCWgPQwjowHKEnOyrQJSGlFKUaBVN6ANoFkdAvQGfaN+9anVlLg=="
78
+ },
79
+ "ep_success_buffer": {
80
+ ":type:": "<class 'collections.deque'>",
81
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
82
+ },
83
+ "_n_updates": 990000,
84
+ "buffer_size": 1,
85
+ "batch_size": 256,
86
+ "learning_starts": 10000,
87
+ "tau": 0.005,
88
+ "gamma": 0.99,
89
+ "gradient_steps": 1,
90
+ "optimize_memory_usage": false,
91
+ "replay_buffer_class": {
92
+ ":type:": "<class 'abc.ABCMeta'>",
93
+ ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
94
+ "__module__": "stable_baselines3.common.buffers",
95
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
96
+ "__init__": "<function ReplayBuffer.__init__ at 0x7fc00640eb90>",
97
+ "add": "<function ReplayBuffer.add at 0x7fc00640ec20>",
98
+ "sample": "<function ReplayBuffer.sample at 0x7fc005f757a0>",
99
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7fc005f75830>",
100
+ "__abstractmethods__": "frozenset()",
101
+ "_abc_impl": "<_abc_data object at 0x7fc0064655d0>"
102
+ },
103
+ "replay_buffer_kwargs": {},
104
+ "train_freq": {
105
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
106
+ ":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
107
+ },
108
+ "use_sde_at_warmup": false,
109
+ "policy_delay": 2,
110
+ "target_noise_clip": 0.5,
111
+ "target_policy_noise": 0.2,
112
+ "remove_time_limit_termination": false
113
+ }
td3-Hopper-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a662428d9b9eb7575d864f3d6cdc041c55cce25460ab7f75bc7d148bd1f5b3a4
3
+ size 3045753
td3-Hopper-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
td3-Hopper-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
2
+ Python: 3.7.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.2
7
+ Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35e19a2c7f4937e5199ef14a2352201461f08841653930d6c67fbc52bbac62e2
3
+ size 88651