File size: 20,071 Bytes
f174ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9101f20
f174ae3
9101f20
f174ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6320f2a
 
 
 
 
 
 
f174ae3
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-regression
widget:
  structuredData:
    Height:
    - 11.52
    - 12.48
    - 12.3778
    Length1:
    - 23.2
    - 24.0
    - 23.9
    Length2:
    - 25.4
    - 26.3
    - 26.5
    Length3:
    - 30.0
    - 31.2
    - 31.1
    Species:
    - Bream
    - Bream
    - Bream
    Width:
    - 4.02
    - 4.3056
    - 4.6961
---

# Model description

This is a GradientBoostingRegressor on a fish dataset.

## Intended uses & limitations

This model is intended for educational purposes.


### Hyperparameters

The model is trained with below hyperparameters.

<details>
<summary> Click to expand </summary>

| Hyperparameter                                      | Value                                                                                                                                                              |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| memory                                              |                                                                                                                                                                    |
| steps                                               | [('columntransformer', ColumnTransformer(remainder='passthrough',transformers=[('onehotencoder',OneHotEncoder(handle_unknown='ignore',sparse=False),<sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0>)])), ('gradientboostingregressor', GradientBoostingRegressor(random_state=42))]                                                                                                                                                                    |
| verbose                                             | False                                                                                                                                                              |
| columntransformer                                   | ColumnTransformer(remainder='passthrough',transformers=[('onehotencoder',OneHotEncoder(handle_unknown='ignore',sparse=False),<sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0>)])                                                                                                                                                                    |
| gradientboostingregressor                           | GradientBoostingRegressor(random_state=42)                                                                                                                         |
| columntransformer__n_jobs                           |                                                                                                                                                                    |
| columntransformer__remainder                        | passthrough                                                                                                                                                        |
| columntransformer__sparse_threshold                 | 0.3                                                                                                                                                                |
| columntransformer__transformer_weights              |                                                                                                                                                                    |
| columntransformer__transformers                     | [('onehotencoder', OneHotEncoder(handle_unknown='ignore', sparse=False), <sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0>)] |
| columntransformer__verbose                          | False                                                                                                                                                              |
| columntransformer__verbose_feature_names_out        | True                                                                                                                                                               |
| columntransformer__onehotencoder                    | OneHotEncoder(handle_unknown='ignore', sparse=False)                                                                                                               |
| columntransformer__onehotencoder__categories        | auto                                                                                                                                                               |
| columntransformer__onehotencoder__drop              |                                                                                                                                                                    |
| columntransformer__onehotencoder__dtype             | <class 'numpy.float64'>                                                                                                                                            |
| columntransformer__onehotencoder__handle_unknown    | ignore                                                                                                                                                             |
| columntransformer__onehotencoder__sparse            | False                                                                                                                                                              |
| gradientboostingregressor__alpha                    | 0.9                                                                                                                                                                |
| gradientboostingregressor__ccp_alpha                | 0.0                                                                                                                                                                |
| gradientboostingregressor__criterion                | friedman_mse                                                                                                                                                       |
| gradientboostingregressor__init                     |                                                                                                                                                                    |
| gradientboostingregressor__learning_rate            | 0.1                                                                                                                                                                |
| gradientboostingregressor__loss                     | squared_error                                                                                                                                                      |
| gradientboostingregressor__max_depth                | 3                                                                                                                                                                  |
| gradientboostingregressor__max_features             |                                                                                                                                                                    |
| gradientboostingregressor__max_leaf_nodes           |                                                                                                                                                                    |
| gradientboostingregressor__min_impurity_decrease    | 0.0                                                                                                                                                                |
| gradientboostingregressor__min_samples_leaf         | 1                                                                                                                                                                  |
| gradientboostingregressor__min_samples_split        | 2                                                                                                                                                                  |
| gradientboostingregressor__min_weight_fraction_leaf | 0.0                                                                                                                                                                |
| gradientboostingregressor__n_estimators             | 100                                                                                                                                                                |
| gradientboostingregressor__n_iter_no_change         |                                                                                                                                                                    |
| gradientboostingregressor__random_state             | 42                                                                                                                                                                 |
| gradientboostingregressor__subsample                | 1.0                                                                                                                                                                |
| gradientboostingregressor__tol                      | 0.0001                                                                                                                                                             |
| gradientboostingregressor__validation_fraction      | 0.1                                                                                                                                                                |
| gradientboostingregressor__verbose                  | 0                                                                                                                                                                  |
| gradientboostingregressor__warm_start               | False                                                                                                                                                              |

</details>

### Model Plot

The model plot is below.

<style>#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 {color: black;background-color: white;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 pre{padding: 0;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-toggleable {background-color: white;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-estimator:hover {background-color: #d4ebff;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-item {z-index: 1;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-parallel-item:only-child::after {width: 0;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794 div.sk-text-repr-fallback {display: none;}</style><div id="sk-ccf5150a-bed5-4d7b-a5a9-a1a6d13a1794" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;onehotencoder&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;,sparse=False),&lt;sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0&gt;)])),(&#x27;gradientboostingregressor&#x27;,GradientBoostingRegressor(random_state=42))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="f6612892-c085-4dd9-8dca-9cb8081c3777" type="checkbox" ><label for="f6612892-c085-4dd9-8dca-9cb8081c3777" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;onehotencoder&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;,sparse=False),&lt;sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0&gt;)])),(&#x27;gradientboostingregressor&#x27;,GradientBoostingRegressor(random_state=42))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="3d74f98b-ae31-452d-af87-2c65b0323ba2" type="checkbox" ><label for="3d74f98b-ae31-452d-af87-2c65b0323ba2" class="sk-toggleable__label sk-toggleable__label-arrow">columntransformer: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;onehotencoder&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;,sparse=False),&lt;sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0&gt;)])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="4af39992-03cf-4522-a288-2db0a787a63c" type="checkbox" ><label for="4af39992-03cf-4522-a288-2db0a787a63c" class="sk-toggleable__label sk-toggleable__label-arrow">onehotencoder</label><div class="sk-toggleable__content"><pre>&lt;sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0&gt;</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="519d5e51-5fa6-45d6-a3f7-59c11370402d" type="checkbox" ><label for="519d5e51-5fa6-45d6-a3f7-59c11370402d" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown=&#x27;ignore&#x27;, sparse=False)</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="7ede29a7-2614-4eed-a021-e85f1aaa5659" type="checkbox" ><label for="7ede29a7-2614-4eed-a021-e85f1aaa5659" class="sk-toggleable__label sk-toggleable__label-arrow">remainder</label><div class="sk-toggleable__content"><pre>[&#x27;Length1&#x27;, &#x27;Length2&#x27;, &#x27;Length3&#x27;, &#x27;Height&#x27;, &#x27;Width&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="69357535-0314-4987-a311-112335d2cb52" type="checkbox" ><label for="69357535-0314-4987-a311-112335d2cb52" class="sk-toggleable__label sk-toggleable__label-arrow">passthrough</label><div class="sk-toggleable__content"><pre>passthrough</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="f247fbf2-2247-4e99-aaa2-f6fb89ce1b13" type="checkbox" ><label for="f247fbf2-2247-4e99-aaa2-f6fb89ce1b13" class="sk-toggleable__label sk-toggleable__label-arrow">GradientBoostingRegressor</label><div class="sk-toggleable__content"><pre>GradientBoostingRegressor(random_state=42)</pre></div></div></div></div></div></div></div>


# How to Get Started with the Model

Use the code below to get started with the model.

<details>
<summary> Click to expand </summary>

```python
from skops.hub_utils import download
from skops.io import load

download("brendenc/Fish-Weight", "path_to_folder")
# make sure model file is in skops format
# if model is a pickle file, make sure it's from a source you trust
model = load("path_to_folder/example.pkl")
```

</details>



# Model Card Authors

This model card is written by following authors:

Brenden Connors