merve HF staff commited on
Commit
c4042c8
1 Parent(s): f256e89

pushing files to the repo from the example!

Browse files
Files changed (4) hide show
  1. README.md +222 -0
  2. config.json +195 -0
  3. confusion_matrix.png +0 -0
  4. example.pkl +3 -0
README.md ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sklearn
3
+ tags:
4
+ - sklearn
5
+ - tabular-classification
6
+ widget:
7
+ structuredData:
8
+ area error:
9
+ - 30.29
10
+ - 96.05
11
+ - 48.31
12
+ compactness error:
13
+ - 0.01911
14
+ - 0.01652
15
+ - 0.01484
16
+ concave points error:
17
+ - 0.01037
18
+ - 0.0137
19
+ - 0.01093
20
+ concavity error:
21
+ - 0.02701
22
+ - 0.02269
23
+ - 0.02813
24
+ fractal dimension error:
25
+ - 0.003586
26
+ - 0.001698
27
+ - 0.002461
28
+ mean area:
29
+ - 481.9
30
+ - 1130.0
31
+ - 748.9
32
+ mean compactness:
33
+ - 0.1058
34
+ - 0.1029
35
+ - 0.1223
36
+ mean concave points:
37
+ - 0.03821
38
+ - 0.07951
39
+ - 0.08087
40
+ mean concavity:
41
+ - 0.08005
42
+ - 0.108
43
+ - 0.1466
44
+ mean fractal dimension:
45
+ - 0.06373
46
+ - 0.05461
47
+ - 0.05796
48
+ mean perimeter:
49
+ - 81.09
50
+ - 123.6
51
+ - 101.7
52
+ mean radius:
53
+ - 12.47
54
+ - 18.94
55
+ - 15.46
56
+ mean smoothness:
57
+ - 0.09965
58
+ - 0.09009
59
+ - 0.1092
60
+ mean symmetry:
61
+ - 0.1925
62
+ - 0.1582
63
+ - 0.1931
64
+ mean texture:
65
+ - 18.6
66
+ - 21.31
67
+ - 19.48
68
+ perimeter error:
69
+ - 2.497
70
+ - 5.486
71
+ - 3.094
72
+ radius error:
73
+ - 0.3961
74
+ - 0.7888
75
+ - 0.4743
76
+ smoothness error:
77
+ - 0.006953
78
+ - 0.004444
79
+ - 0.00624
80
+ symmetry error:
81
+ - 0.01782
82
+ - 0.01386
83
+ - 0.01397
84
+ texture error:
85
+ - 1.044
86
+ - 0.7975
87
+ - 0.7859
88
+ worst area:
89
+ - 677.9
90
+ - 1866.0
91
+ - 1156.0
92
+ worst compactness:
93
+ - 0.2378
94
+ - 0.2336
95
+ - 0.2394
96
+ worst concave points:
97
+ - 0.1015
98
+ - 0.1789
99
+ - 0.1514
100
+ worst concavity:
101
+ - 0.2671
102
+ - 0.2687
103
+ - 0.3791
104
+ worst fractal dimension:
105
+ - 0.0875
106
+ - 0.06589
107
+ - 0.08019
108
+ worst perimeter:
109
+ - 96.05
110
+ - 165.9
111
+ - 124.9
112
+ worst radius:
113
+ - 14.97
114
+ - 24.86
115
+ - 19.26
116
+ worst smoothness:
117
+ - 0.1426
118
+ - 0.1193
119
+ - 0.1546
120
+ worst symmetry:
121
+ - 0.3014
122
+ - 0.2551
123
+ - 0.2837
124
+ worst texture:
125
+ - 24.64
126
+ - 26.58
127
+ - 26.0
128
+ ---
129
+
130
+ # Model description
131
+
132
+ This is a DecisionTreeClassifier model trained on breast cancer dataset.
133
+
134
+ ## Intended uses & limitations
135
+
136
+ This model is not ready to be used in production.
137
+
138
+ ## Training Procedure
139
+
140
+ ### Hyperparameters
141
+
142
+ The model is trained with below hyperparameters.
143
+
144
+ <details>
145
+ <summary> Click to expand </summary>
146
+
147
+ | Hyperparameter | Value |
148
+ |--------------------------|---------|
149
+ | ccp_alpha | 0.0 |
150
+ | class_weight | |
151
+ | criterion | gini |
152
+ | max_depth | |
153
+ | max_features | |
154
+ | max_leaf_nodes | |
155
+ | min_impurity_decrease | 0.0 |
156
+ | min_samples_leaf | 1 |
157
+ | min_samples_split | 2 |
158
+ | min_weight_fraction_leaf | 0.0 |
159
+ | random_state | |
160
+ | splitter | best |
161
+
162
+ </details>
163
+
164
+ ### Model Plot
165
+
166
+ The model plot is below.
167
+
168
+ <style>#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 {color: black;background-color: white;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 pre{padding: 0;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-toggleable {background-color: white;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-estimator:hover {background-color: #d4ebff;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-item {z-index: 1;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-parallel-item:only-child::after {width: 0;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741 div.sk-text-repr-fallback {display: none;}</style><div id="sk-7c3e7180-7d07-45af-b2c4-4682b6ba8741" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>DecisionTreeClassifier()</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="f10c71c1-4f35-46d5-b90a-c6e06005a09c" type="checkbox" checked><label for="f10c71c1-4f35-46d5-b90a-c6e06005a09c" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier()</pre></div></div></div></div></div>
169
+
170
+ ## Evaluation Results
171
+
172
+ You can find the details about evaluation process and the evaluation results.
173
+
174
+
175
+
176
+ | Metric | Value |
177
+ |----------|----------|
178
+ | accuracy | 0.935673 |
179
+ | f1 score | 0.935673 |
180
+
181
+ # How to Get Started with the Model
182
+
183
+ Use the code below to get started with the model.
184
+
185
+ <details>
186
+ <summary> Click to expand </summary>
187
+
188
+ ```python
189
+ import pickle
190
+ with open(dtc_pkl_filename, 'rb') as file:
191
+ clf = pickle.load(file)
192
+ ```
193
+
194
+ </details>
195
+
196
+
197
+
198
+
199
+ # Model Card Authors
200
+
201
+ This model card is written by following authors:
202
+
203
+ skops_user
204
+
205
+ # Model Card Contact
206
+
207
+ You can contact the model card authors through following channels:
208
+ [More Information Needed]
209
+
210
+ # Citation
211
+
212
+ Below you can find information related to citation.
213
+
214
+ **BibTeX:**
215
+ ```
216
+ bibtex
217
+ @inproceedings{...,year={2020}}
218
+ ```
219
+
220
+
221
+ Confusion Matrix
222
+ ![Confusion Matrix](confusion_matrix.png)
config.json ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "mean radius",
5
+ "mean texture",
6
+ "mean perimeter",
7
+ "mean area",
8
+ "mean smoothness",
9
+ "mean compactness",
10
+ "mean concavity",
11
+ "mean concave points",
12
+ "mean symmetry",
13
+ "mean fractal dimension",
14
+ "radius error",
15
+ "texture error",
16
+ "perimeter error",
17
+ "area error",
18
+ "smoothness error",
19
+ "compactness error",
20
+ "concavity error",
21
+ "concave points error",
22
+ "symmetry error",
23
+ "fractal dimension error",
24
+ "worst radius",
25
+ "worst texture",
26
+ "worst perimeter",
27
+ "worst area",
28
+ "worst smoothness",
29
+ "worst compactness",
30
+ "worst concavity",
31
+ "worst concave points",
32
+ "worst symmetry",
33
+ "worst fractal dimension"
34
+ ],
35
+ "environment": [
36
+ "scikit-learn=1.0.2"
37
+ ],
38
+ "example_input": {
39
+ "area error": [
40
+ 30.29,
41
+ 96.05,
42
+ 48.31
43
+ ],
44
+ "compactness error": [
45
+ 0.01911,
46
+ 0.01652,
47
+ 0.01484
48
+ ],
49
+ "concave points error": [
50
+ 0.01037,
51
+ 0.0137,
52
+ 0.01093
53
+ ],
54
+ "concavity error": [
55
+ 0.02701,
56
+ 0.02269,
57
+ 0.02813
58
+ ],
59
+ "fractal dimension error": [
60
+ 0.003586,
61
+ 0.001698,
62
+ 0.002461
63
+ ],
64
+ "mean area": [
65
+ 481.9,
66
+ 1130.0,
67
+ 748.9
68
+ ],
69
+ "mean compactness": [
70
+ 0.1058,
71
+ 0.1029,
72
+ 0.1223
73
+ ],
74
+ "mean concave points": [
75
+ 0.03821,
76
+ 0.07951,
77
+ 0.08087
78
+ ],
79
+ "mean concavity": [
80
+ 0.08005,
81
+ 0.108,
82
+ 0.1466
83
+ ],
84
+ "mean fractal dimension": [
85
+ 0.06373,
86
+ 0.05461,
87
+ 0.05796
88
+ ],
89
+ "mean perimeter": [
90
+ 81.09,
91
+ 123.6,
92
+ 101.7
93
+ ],
94
+ "mean radius": [
95
+ 12.47,
96
+ 18.94,
97
+ 15.46
98
+ ],
99
+ "mean smoothness": [
100
+ 0.09965,
101
+ 0.09009,
102
+ 0.1092
103
+ ],
104
+ "mean symmetry": [
105
+ 0.1925,
106
+ 0.1582,
107
+ 0.1931
108
+ ],
109
+ "mean texture": [
110
+ 18.6,
111
+ 21.31,
112
+ 19.48
113
+ ],
114
+ "perimeter error": [
115
+ 2.497,
116
+ 5.486,
117
+ 3.094
118
+ ],
119
+ "radius error": [
120
+ 0.3961,
121
+ 0.7888,
122
+ 0.4743
123
+ ],
124
+ "smoothness error": [
125
+ 0.006953,
126
+ 0.004444,
127
+ 0.00624
128
+ ],
129
+ "symmetry error": [
130
+ 0.01782,
131
+ 0.01386,
132
+ 0.01397
133
+ ],
134
+ "texture error": [
135
+ 1.044,
136
+ 0.7975,
137
+ 0.7859
138
+ ],
139
+ "worst area": [
140
+ 677.9,
141
+ 1866.0,
142
+ 1156.0
143
+ ],
144
+ "worst compactness": [
145
+ 0.2378,
146
+ 0.2336,
147
+ 0.2394
148
+ ],
149
+ "worst concave points": [
150
+ 0.1015,
151
+ 0.1789,
152
+ 0.1514
153
+ ],
154
+ "worst concavity": [
155
+ 0.2671,
156
+ 0.2687,
157
+ 0.3791
158
+ ],
159
+ "worst fractal dimension": [
160
+ 0.0875,
161
+ 0.06589,
162
+ 0.08019
163
+ ],
164
+ "worst perimeter": [
165
+ 96.05,
166
+ 165.9,
167
+ 124.9
168
+ ],
169
+ "worst radius": [
170
+ 14.97,
171
+ 24.86,
172
+ 19.26
173
+ ],
174
+ "worst smoothness": [
175
+ 0.1426,
176
+ 0.1193,
177
+ 0.1546
178
+ ],
179
+ "worst symmetry": [
180
+ 0.3014,
181
+ 0.2551,
182
+ 0.2837
183
+ ],
184
+ "worst texture": [
185
+ 24.64,
186
+ 26.58,
187
+ 26.0
188
+ ]
189
+ },
190
+ "model": {
191
+ "file": "example.pkl"
192
+ },
193
+ "task": "tabular-classification"
194
+ }
195
+ }
confusion_matrix.png ADDED
example.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5c621c51fb18d08891d7e5f1d5a3c86e20293294c480be30a02022a0481413e
3
+ size 4268