merve HF staff commited on
Commit
16636ee
1 Parent(s): 7dc3b9e

Upload . with huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +253 -0
  2. config.json +208 -0
  3. model.pkl +3 -0
README.md ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: sklearn
4
+ tags:
5
+ - sklearn
6
+ - skops
7
+ - tabular-regression
8
+ model_file: model.pkl
9
+ widget:
10
+ structuredData:
11
+ Fedu:
12
+ - 3
13
+ - 3
14
+ - 3
15
+ Fjob:
16
+ - other
17
+ - other
18
+ - services
19
+ G1:
20
+ - 12
21
+ - 13
22
+ - 8
23
+ G2:
24
+ - 13
25
+ - 14
26
+ - 7
27
+ G3:
28
+ - 12
29
+ - 14
30
+ - 0
31
+ Medu:
32
+ - 3
33
+ - 2
34
+ - 1
35
+ Mjob:
36
+ - services
37
+ - other
38
+ - at_home
39
+ Pstatus:
40
+ - T
41
+ - T
42
+ - T
43
+ Walc:
44
+ - 2
45
+ - 1
46
+ - 1
47
+ absences:
48
+ - 2
49
+ - 0
50
+ - 0
51
+ activities:
52
+ - 'yes'
53
+ - 'no'
54
+ - 'yes'
55
+ address:
56
+ - U
57
+ - U
58
+ - U
59
+ age:
60
+ - 16
61
+ - 16
62
+ - 16
63
+ failures:
64
+ - 0
65
+ - 0
66
+ - 3
67
+ famrel:
68
+ - 4
69
+ - 5
70
+ - 4
71
+ famsize:
72
+ - GT3
73
+ - GT3
74
+ - GT3
75
+ famsup:
76
+ - 'no'
77
+ - 'no'
78
+ - 'no'
79
+ freetime:
80
+ - 2
81
+ - 3
82
+ - 3
83
+ goout:
84
+ - 3
85
+ - 3
86
+ - 5
87
+ guardian:
88
+ - mother
89
+ - father
90
+ - mother
91
+ health:
92
+ - 3
93
+ - 3
94
+ - 3
95
+ higher:
96
+ - 'yes'
97
+ - 'yes'
98
+ - 'yes'
99
+ internet:
100
+ - 'yes'
101
+ - 'yes'
102
+ - 'yes'
103
+ nursery:
104
+ - 'yes'
105
+ - 'yes'
106
+ - 'no'
107
+ paid:
108
+ - 'yes'
109
+ - 'no'
110
+ - 'no'
111
+ reason:
112
+ - home
113
+ - home
114
+ - home
115
+ romantic:
116
+ - 'yes'
117
+ - 'no'
118
+ - 'yes'
119
+ school:
120
+ - GP
121
+ - GP
122
+ - GP
123
+ schoolsup:
124
+ - 'no'
125
+ - 'no'
126
+ - 'no'
127
+ sex:
128
+ - M
129
+ - M
130
+ - F
131
+ studytime:
132
+ - 2
133
+ - 1
134
+ - 2
135
+ traveltime:
136
+ - 1
137
+ - 2
138
+ - 1
139
+ ---
140
+
141
+ # Model description
142
+
143
+ This is an XGBoost model trained to predict daily alcohol consumption of students.
144
+
145
+ ## Intended uses & limitations
146
+
147
+ [More Information Needed]
148
+
149
+ ## Training Procedure
150
+
151
+ ### Hyperparameters
152
+
153
+ The model is trained with below hyperparameters.
154
+
155
+ <details>
156
+ <summary> Click to expand </summary>
157
+
158
+ | Hyperparameter | Value |
159
+ |---------------------------------------|------------------------------------------------------|
160
+ | memory | |
161
+ | steps | [('onehotencoder', OneHotEncoder(handle_unknown='ignore', sparse=False)), ('xgbregressor', XGBRegressor(base_score=None, booster=None, callbacks=None,<br /> colsample_bylevel=None, colsample_bynode=None,<br /> colsample_bytree=None, early_stopping_rounds=None,<br /> enable_categorical=False, eval_metric=None, feature_types=None,<br /> gamma=None, gpu_id=None, grow_policy=None, importance_type=None,<br /> interaction_constraints=None, learning_rate=None, max_bin=None,<br /> max_cat_threshold=None, max_cat_to_onehot=None,<br /> max_delta_step=None, max_depth=5, max_leaves=None,<br /> min_child_weight=None, missing=nan, monotone_constraints=None,<br /> n_estimators=100, n_jobs=None, num_parallel_tree=None,<br /> predictor=None, random_state=None, ...))] |
162
+ | verbose | False |
163
+ | onehotencoder | OneHotEncoder(handle_unknown='ignore', sparse=False) |
164
+ | xgbregressor | XGBRegressor(base_score=None, booster=None, callbacks=None,<br /> colsample_bylevel=None, colsample_bynode=None,<br /> colsample_bytree=None, early_stopping_rounds=None,<br /> enable_categorical=False, eval_metric=None, feature_types=None,<br /> gamma=None, gpu_id=None, grow_policy=None, importance_type=None,<br /> interaction_constraints=None, learning_rate=None, max_bin=None,<br /> max_cat_threshold=None, max_cat_to_onehot=None,<br /> max_delta_step=None, max_depth=5, max_leaves=None,<br /> min_child_weight=None, missing=nan, monotone_constraints=None,<br /> n_estimators=100, n_jobs=None, num_parallel_tree=None,<br /> predictor=None, random_state=None, ...) |
165
+ | onehotencoder__categories | auto |
166
+ | onehotencoder__drop | |
167
+ | onehotencoder__dtype | <class 'numpy.float64'> |
168
+ | onehotencoder__handle_unknown | ignore |
169
+ | onehotencoder__sparse | False |
170
+ | xgbregressor__objective | reg:squarederror |
171
+ | xgbregressor__base_score | |
172
+ | xgbregressor__booster | |
173
+ | xgbregressor__callbacks | |
174
+ | xgbregressor__colsample_bylevel | |
175
+ | xgbregressor__colsample_bynode | |
176
+ | xgbregressor__colsample_bytree | |
177
+ | xgbregressor__early_stopping_rounds | |
178
+ | xgbregressor__enable_categorical | False |
179
+ | xgbregressor__eval_metric | |
180
+ | xgbregressor__feature_types | |
181
+ | xgbregressor__gamma | |
182
+ | xgbregressor__gpu_id | |
183
+ | xgbregressor__grow_policy | |
184
+ | xgbregressor__importance_type | |
185
+ | xgbregressor__interaction_constraints | |
186
+ | xgbregressor__learning_rate | |
187
+ | xgbregressor__max_bin | |
188
+ | xgbregressor__max_cat_threshold | |
189
+ | xgbregressor__max_cat_to_onehot | |
190
+ | xgbregressor__max_delta_step | |
191
+ | xgbregressor__max_depth | 5 |
192
+ | xgbregressor__max_leaves | |
193
+ | xgbregressor__min_child_weight | |
194
+ | xgbregressor__missing | nan |
195
+ | xgbregressor__monotone_constraints | |
196
+ | xgbregressor__n_estimators | 100 |
197
+ | xgbregressor__n_jobs | |
198
+ | xgbregressor__num_parallel_tree | |
199
+ | xgbregressor__predictor | |
200
+ | xgbregressor__random_state | |
201
+ | xgbregressor__reg_alpha | |
202
+ | xgbregressor__reg_lambda | |
203
+ | xgbregressor__sampling_method | |
204
+ | xgbregressor__scale_pos_weight | |
205
+ | xgbregressor__subsample | |
206
+ | xgbregressor__tree_method | |
207
+ | xgbregressor__validate_parameters | |
208
+ | xgbregressor__verbosity | |
209
+
210
+ </details>
211
+
212
+ ### Model Plot
213
+
214
+ The model plot is below.
215
+
216
+ <style>#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 {color: black;background-color: white;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 pre{padding: 0;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-toggleable {background-color: white;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-estimator:hover {background-color: #d4ebff;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-item {z-index: 1;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-parallel-item:only-child::after {width: 0;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-text-repr-fallback {display: none;}</style><div id="sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;onehotencoder&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;, sparse=False)),(&#x27;xgbregressor&#x27;,XGBRegressor(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None,feature_types=None, gamma=None, gpu_id=None,grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=5, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, n_estimators=100,n_jobs=None, num_parallel_tree=None,predictor=None, random_state=None, ...))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="3e1fc9fd-9464-4cf2-a34f-716e1f03bb90" type="checkbox" ><label for="3e1fc9fd-9464-4cf2-a34f-716e1f03bb90" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;onehotencoder&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;, sparse=False)),(&#x27;xgbregressor&#x27;,XGBRegressor(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None,feature_types=None, gamma=None, gpu_id=None,grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=5, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, n_estimators=100,n_jobs=None, num_parallel_tree=None,predictor=None, random_state=None, ...))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="064b4f21-1fc7-4646-9751-108c0cbbd266" type="checkbox" ><label for="064b4f21-1fc7-4646-9751-108c0cbbd266" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown=&#x27;ignore&#x27;, sparse=False)</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="8239516d-467c-4346-82ae-95b2c33e2b8a" type="checkbox" ><label for="8239516d-467c-4346-82ae-95b2c33e2b8a" class="sk-toggleable__label sk-toggleable__label-arrow">XGBRegressor</label><div class="sk-toggleable__content"><pre>XGBRegressor(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None, feature_types=None,gamma=None, gpu_id=None, grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None, max_bin=None,max_cat_threshold=None, max_cat_to_onehot=None,max_delta_step=None, max_depth=5, max_leaves=None,min_child_weight=None, missing=nan, monotone_constraints=None,n_estimators=100, n_jobs=None, num_parallel_tree=None,predictor=None, random_state=None, ...)</pre></div></div></div></div></div></div></div>
217
+
218
+ ## Evaluation Results
219
+
220
+ You can find the details about evaluation process and the evaluation results.
221
+
222
+ | Metric | Value |
223
+ |--------------------|---------|
224
+ | R squared | 0.382 |
225
+ | Mean Squared Error | 0.43055 |
226
+
227
+ # How to Get Started with the Model
228
+
229
+ [More Information Needed]
230
+
231
+ # Model Card Authors
232
+
233
+ This model card is written by following authors:
234
+
235
+ [More Information Needed]
236
+
237
+ # Model Card Contact
238
+
239
+ You can contact the model card authors through following channels:
240
+ [More Information Needed]
241
+
242
+ # Citation
243
+
244
+ Below you can find information related to citation.
245
+
246
+ **BibTeX:**
247
+ ```
248
+ [More Information Needed]
249
+ ```
250
+
251
+ # Feature Importance Plot
252
+
253
+ <style>table.eli5-weights tr:hover {filter: brightness(85%);}</style><p>Explained as: feature importances</p><pre>XGBoost feature importances; values are numbers 0 <= x <= 1;all values sum to 1.</pre><table class="eli5-weights eli5-feature-importances" style="border-collapse: collapse; border: none; margin-top: 0em; table-layout: auto;"><thead><tr style="border: none;"><th style="padding: 0 1em 0 0.5em; text-align: right; border: none;">Weight</th><th style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">Feature</th></tr></thead><tbody><tr style="background-color: hsl(120, 100.00%, 80.00%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.3592</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x26_5</td></tr><tr style="background-color: hsl(120, 100.00%, 94.98%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0499</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x26_1</td></tr><tr style="background-color: hsl(120, 100.00%, 95.83%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0383</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x26_4</td></tr><tr style="background-color: hsl(120, 100.00%, 96.28%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0325</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x23_3</td></tr><tr style="background-color: hsl(120, 100.00%, 96.85%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0256</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x28_0</td></tr><tr style="background-color: hsl(120, 100.00%, 97.09%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0229</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x30_10</td></tr><tr style="background-color: hsl(120, 100.00%, 97.15%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0222</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x8_health</td></tr><tr style="background-color: hsl(120, 100.00%, 97.32%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0203</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x29_10</td></tr><tr style="background-color: hsl(120, 100.00%, 97.35%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0200</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x14_2</td></tr><tr style="background-color: hsl(120, 100.00%, 97.35%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0200</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x7_3</td></tr><tr style="background-color: hsl(120, 100.00%, 97.36%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0199</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x31_16</td></tr><tr style="background-color: hsl(120, 100.00%, 97.55%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0179</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x28_8</td></tr><tr style="background-color: hsl(120, 100.00%, 97.78%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0155</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x28_6</td></tr><tr style="background-color: hsl(120, 100.00%, 97.78%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0155</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x11_mother</td></tr><tr style="background-color: hsl(120, 100.00%, 97.85%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0149</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x29_12</td></tr><tr style="background-color: hsl(120, 100.00%, 97.89%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0145</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x26_2</td></tr><tr style="background-color: hsl(120, 100.00%, 97.96%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0138</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x21_no</td></tr><tr style="background-color: hsl(120, 100.00%, 98.24%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0112</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x6_2</td></tr><tr style="background-color: hsl(120, 100.00%, 98.39%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0098</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x14_0</td></tr><tr style="background-color: hsl(120, 100.00%, 98.47%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0092</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x18_no</td></tr><tr style="background-color: hsl(120, 100.00%, 98.47%); border: none;"><td colspan="2" style="padding: 0 0.5em 0 0.5em; text-align: center; border: none; white-space: nowrap;"><i>&hellip; 161 more &hellip;</i></td></tr></tbody></table>
config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "school",
5
+ "sex",
6
+ "age",
7
+ "address",
8
+ "famsize",
9
+ "Pstatus",
10
+ "Medu",
11
+ "Fedu",
12
+ "Mjob",
13
+ "Fjob",
14
+ "reason",
15
+ "guardian",
16
+ "traveltime",
17
+ "studytime",
18
+ "failures",
19
+ "schoolsup",
20
+ "famsup",
21
+ "paid",
22
+ "activities",
23
+ "nursery",
24
+ "higher",
25
+ "internet",
26
+ "romantic",
27
+ "famrel",
28
+ "freetime",
29
+ "goout",
30
+ "Walc",
31
+ "health",
32
+ "absences",
33
+ "G1",
34
+ "G2",
35
+ "G3"
36
+ ],
37
+ "environment": [
38
+ "scikit-learn=1.0.2, xgboost=1.7.3"
39
+ ],
40
+ "example_input": {
41
+ "Fedu": [
42
+ 3,
43
+ 3,
44
+ 3
45
+ ],
46
+ "Fjob": [
47
+ "other",
48
+ "other",
49
+ "services"
50
+ ],
51
+ "G1": [
52
+ 12,
53
+ 13,
54
+ 8
55
+ ],
56
+ "G2": [
57
+ 13,
58
+ 14,
59
+ 7
60
+ ],
61
+ "G3": [
62
+ 12,
63
+ 14,
64
+ 0
65
+ ],
66
+ "Medu": [
67
+ 3,
68
+ 2,
69
+ 1
70
+ ],
71
+ "Mjob": [
72
+ "services",
73
+ "other",
74
+ "at_home"
75
+ ],
76
+ "Pstatus": [
77
+ "T",
78
+ "T",
79
+ "T"
80
+ ],
81
+ "Walc": [
82
+ 2,
83
+ 1,
84
+ 1
85
+ ],
86
+ "absences": [
87
+ 2,
88
+ 0,
89
+ 0
90
+ ],
91
+ "activities": [
92
+ "yes",
93
+ "no",
94
+ "yes"
95
+ ],
96
+ "address": [
97
+ "U",
98
+ "U",
99
+ "U"
100
+ ],
101
+ "age": [
102
+ 16,
103
+ 16,
104
+ 16
105
+ ],
106
+ "failures": [
107
+ 0,
108
+ 0,
109
+ 3
110
+ ],
111
+ "famrel": [
112
+ 4,
113
+ 5,
114
+ 4
115
+ ],
116
+ "famsize": [
117
+ "GT3",
118
+ "GT3",
119
+ "GT3"
120
+ ],
121
+ "famsup": [
122
+ "no",
123
+ "no",
124
+ "no"
125
+ ],
126
+ "freetime": [
127
+ 2,
128
+ 3,
129
+ 3
130
+ ],
131
+ "goout": [
132
+ 3,
133
+ 3,
134
+ 5
135
+ ],
136
+ "guardian": [
137
+ "mother",
138
+ "father",
139
+ "mother"
140
+ ],
141
+ "health": [
142
+ 3,
143
+ 3,
144
+ 3
145
+ ],
146
+ "higher": [
147
+ "yes",
148
+ "yes",
149
+ "yes"
150
+ ],
151
+ "internet": [
152
+ "yes",
153
+ "yes",
154
+ "yes"
155
+ ],
156
+ "nursery": [
157
+ "yes",
158
+ "yes",
159
+ "no"
160
+ ],
161
+ "paid": [
162
+ "yes",
163
+ "no",
164
+ "no"
165
+ ],
166
+ "reason": [
167
+ "home",
168
+ "home",
169
+ "home"
170
+ ],
171
+ "romantic": [
172
+ "yes",
173
+ "no",
174
+ "yes"
175
+ ],
176
+ "school": [
177
+ "GP",
178
+ "GP",
179
+ "GP"
180
+ ],
181
+ "schoolsup": [
182
+ "no",
183
+ "no",
184
+ "no"
185
+ ],
186
+ "sex": [
187
+ "M",
188
+ "M",
189
+ "F"
190
+ ],
191
+ "studytime": [
192
+ 2,
193
+ 1,
194
+ 2
195
+ ],
196
+ "traveltime": [
197
+ 1,
198
+ 2,
199
+ 1
200
+ ]
201
+ },
202
+ "model": {
203
+ "file": "model.pkl"
204
+ },
205
+ "model_format": "pickle",
206
+ "task": "tabular-regression"
207
+ }
208
+ }
model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3a554fc0488edc63273dd53fdb1508ff0f4782b8973436fa20f12bf80b4da2a
3
+ size 186871