Upload . with huggingface_hub
Browse files- README.md +253 -0
- config.json +208 -0
- model.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
library_name: sklearn
|
4 |
+
tags:
|
5 |
+
- sklearn
|
6 |
+
- skops
|
7 |
+
- tabular-regression
|
8 |
+
model_file: model.pkl
|
9 |
+
widget:
|
10 |
+
structuredData:
|
11 |
+
Fedu:
|
12 |
+
- 3
|
13 |
+
- 3
|
14 |
+
- 3
|
15 |
+
Fjob:
|
16 |
+
- other
|
17 |
+
- other
|
18 |
+
- services
|
19 |
+
G1:
|
20 |
+
- 12
|
21 |
+
- 13
|
22 |
+
- 8
|
23 |
+
G2:
|
24 |
+
- 13
|
25 |
+
- 14
|
26 |
+
- 7
|
27 |
+
G3:
|
28 |
+
- 12
|
29 |
+
- 14
|
30 |
+
- 0
|
31 |
+
Medu:
|
32 |
+
- 3
|
33 |
+
- 2
|
34 |
+
- 1
|
35 |
+
Mjob:
|
36 |
+
- services
|
37 |
+
- other
|
38 |
+
- at_home
|
39 |
+
Pstatus:
|
40 |
+
- T
|
41 |
+
- T
|
42 |
+
- T
|
43 |
+
Walc:
|
44 |
+
- 2
|
45 |
+
- 1
|
46 |
+
- 1
|
47 |
+
absences:
|
48 |
+
- 2
|
49 |
+
- 0
|
50 |
+
- 0
|
51 |
+
activities:
|
52 |
+
- 'yes'
|
53 |
+
- 'no'
|
54 |
+
- 'yes'
|
55 |
+
address:
|
56 |
+
- U
|
57 |
+
- U
|
58 |
+
- U
|
59 |
+
age:
|
60 |
+
- 16
|
61 |
+
- 16
|
62 |
+
- 16
|
63 |
+
failures:
|
64 |
+
- 0
|
65 |
+
- 0
|
66 |
+
- 3
|
67 |
+
famrel:
|
68 |
+
- 4
|
69 |
+
- 5
|
70 |
+
- 4
|
71 |
+
famsize:
|
72 |
+
- GT3
|
73 |
+
- GT3
|
74 |
+
- GT3
|
75 |
+
famsup:
|
76 |
+
- 'no'
|
77 |
+
- 'no'
|
78 |
+
- 'no'
|
79 |
+
freetime:
|
80 |
+
- 2
|
81 |
+
- 3
|
82 |
+
- 3
|
83 |
+
goout:
|
84 |
+
- 3
|
85 |
+
- 3
|
86 |
+
- 5
|
87 |
+
guardian:
|
88 |
+
- mother
|
89 |
+
- father
|
90 |
+
- mother
|
91 |
+
health:
|
92 |
+
- 3
|
93 |
+
- 3
|
94 |
+
- 3
|
95 |
+
higher:
|
96 |
+
- 'yes'
|
97 |
+
- 'yes'
|
98 |
+
- 'yes'
|
99 |
+
internet:
|
100 |
+
- 'yes'
|
101 |
+
- 'yes'
|
102 |
+
- 'yes'
|
103 |
+
nursery:
|
104 |
+
- 'yes'
|
105 |
+
- 'yes'
|
106 |
+
- 'no'
|
107 |
+
paid:
|
108 |
+
- 'yes'
|
109 |
+
- 'no'
|
110 |
+
- 'no'
|
111 |
+
reason:
|
112 |
+
- home
|
113 |
+
- home
|
114 |
+
- home
|
115 |
+
romantic:
|
116 |
+
- 'yes'
|
117 |
+
- 'no'
|
118 |
+
- 'yes'
|
119 |
+
school:
|
120 |
+
- GP
|
121 |
+
- GP
|
122 |
+
- GP
|
123 |
+
schoolsup:
|
124 |
+
- 'no'
|
125 |
+
- 'no'
|
126 |
+
- 'no'
|
127 |
+
sex:
|
128 |
+
- M
|
129 |
+
- M
|
130 |
+
- F
|
131 |
+
studytime:
|
132 |
+
- 2
|
133 |
+
- 1
|
134 |
+
- 2
|
135 |
+
traveltime:
|
136 |
+
- 1
|
137 |
+
- 2
|
138 |
+
- 1
|
139 |
+
---
|
140 |
+
|
141 |
+
# Model description
|
142 |
+
|
143 |
+
This is an XGBoost model trained to predict daily alcohol consumption of students.
|
144 |
+
|
145 |
+
## Intended uses & limitations
|
146 |
+
|
147 |
+
[More Information Needed]
|
148 |
+
|
149 |
+
## Training Procedure
|
150 |
+
|
151 |
+
### Hyperparameters
|
152 |
+
|
153 |
+
The model is trained with below hyperparameters.
|
154 |
+
|
155 |
+
<details>
|
156 |
+
<summary> Click to expand </summary>
|
157 |
+
|
158 |
+
| Hyperparameter | Value |
|
159 |
+
|---------------------------------------|------------------------------------------------------|
|
160 |
+
| memory | |
|
161 |
+
| steps | [('onehotencoder', OneHotEncoder(handle_unknown='ignore', sparse=False)), ('xgbregressor', XGBRegressor(base_score=None, booster=None, callbacks=None,<br /> colsample_bylevel=None, colsample_bynode=None,<br /> colsample_bytree=None, early_stopping_rounds=None,<br /> enable_categorical=False, eval_metric=None, feature_types=None,<br /> gamma=None, gpu_id=None, grow_policy=None, importance_type=None,<br /> interaction_constraints=None, learning_rate=None, max_bin=None,<br /> max_cat_threshold=None, max_cat_to_onehot=None,<br /> max_delta_step=None, max_depth=5, max_leaves=None,<br /> min_child_weight=None, missing=nan, monotone_constraints=None,<br /> n_estimators=100, n_jobs=None, num_parallel_tree=None,<br /> predictor=None, random_state=None, ...))] |
|
162 |
+
| verbose | False |
|
163 |
+
| onehotencoder | OneHotEncoder(handle_unknown='ignore', sparse=False) |
|
164 |
+
| xgbregressor | XGBRegressor(base_score=None, booster=None, callbacks=None,<br /> colsample_bylevel=None, colsample_bynode=None,<br /> colsample_bytree=None, early_stopping_rounds=None,<br /> enable_categorical=False, eval_metric=None, feature_types=None,<br /> gamma=None, gpu_id=None, grow_policy=None, importance_type=None,<br /> interaction_constraints=None, learning_rate=None, max_bin=None,<br /> max_cat_threshold=None, max_cat_to_onehot=None,<br /> max_delta_step=None, max_depth=5, max_leaves=None,<br /> min_child_weight=None, missing=nan, monotone_constraints=None,<br /> n_estimators=100, n_jobs=None, num_parallel_tree=None,<br /> predictor=None, random_state=None, ...) |
|
165 |
+
| onehotencoder__categories | auto |
|
166 |
+
| onehotencoder__drop | |
|
167 |
+
| onehotencoder__dtype | <class 'numpy.float64'> |
|
168 |
+
| onehotencoder__handle_unknown | ignore |
|
169 |
+
| onehotencoder__sparse | False |
|
170 |
+
| xgbregressor__objective | reg:squarederror |
|
171 |
+
| xgbregressor__base_score | |
|
172 |
+
| xgbregressor__booster | |
|
173 |
+
| xgbregressor__callbacks | |
|
174 |
+
| xgbregressor__colsample_bylevel | |
|
175 |
+
| xgbregressor__colsample_bynode | |
|
176 |
+
| xgbregressor__colsample_bytree | |
|
177 |
+
| xgbregressor__early_stopping_rounds | |
|
178 |
+
| xgbregressor__enable_categorical | False |
|
179 |
+
| xgbregressor__eval_metric | |
|
180 |
+
| xgbregressor__feature_types | |
|
181 |
+
| xgbregressor__gamma | |
|
182 |
+
| xgbregressor__gpu_id | |
|
183 |
+
| xgbregressor__grow_policy | |
|
184 |
+
| xgbregressor__importance_type | |
|
185 |
+
| xgbregressor__interaction_constraints | |
|
186 |
+
| xgbregressor__learning_rate | |
|
187 |
+
| xgbregressor__max_bin | |
|
188 |
+
| xgbregressor__max_cat_threshold | |
|
189 |
+
| xgbregressor__max_cat_to_onehot | |
|
190 |
+
| xgbregressor__max_delta_step | |
|
191 |
+
| xgbregressor__max_depth | 5 |
|
192 |
+
| xgbregressor__max_leaves | |
|
193 |
+
| xgbregressor__min_child_weight | |
|
194 |
+
| xgbregressor__missing | nan |
|
195 |
+
| xgbregressor__monotone_constraints | |
|
196 |
+
| xgbregressor__n_estimators | 100 |
|
197 |
+
| xgbregressor__n_jobs | |
|
198 |
+
| xgbregressor__num_parallel_tree | |
|
199 |
+
| xgbregressor__predictor | |
|
200 |
+
| xgbregressor__random_state | |
|
201 |
+
| xgbregressor__reg_alpha | |
|
202 |
+
| xgbregressor__reg_lambda | |
|
203 |
+
| xgbregressor__sampling_method | |
|
204 |
+
| xgbregressor__scale_pos_weight | |
|
205 |
+
| xgbregressor__subsample | |
|
206 |
+
| xgbregressor__tree_method | |
|
207 |
+
| xgbregressor__validate_parameters | |
|
208 |
+
| xgbregressor__verbosity | |
|
209 |
+
|
210 |
+
</details>
|
211 |
+
|
212 |
+
### Model Plot
|
213 |
+
|
214 |
+
The model plot is below.
|
215 |
+
|
216 |
+
<style>#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 {color: black;background-color: white;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 pre{padding: 0;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-toggleable {background-color: white;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-estimator:hover {background-color: #d4ebff;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-item {z-index: 1;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-parallel-item:only-child::after {width: 0;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3 div.sk-text-repr-fallback {display: none;}</style><div id="sk-d0e2e311-416b-4a48-aa9a-44adf04b1ee3" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('onehotencoder',OneHotEncoder(handle_unknown='ignore', sparse=False)),('xgbregressor',XGBRegressor(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None,feature_types=None, gamma=None, gpu_id=None,grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=5, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, n_estimators=100,n_jobs=None, num_parallel_tree=None,predictor=None, random_state=None, ...))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="3e1fc9fd-9464-4cf2-a34f-716e1f03bb90" type="checkbox" ><label for="3e1fc9fd-9464-4cf2-a34f-716e1f03bb90" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('onehotencoder',OneHotEncoder(handle_unknown='ignore', sparse=False)),('xgbregressor',XGBRegressor(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None,feature_types=None, gamma=None, gpu_id=None,grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=5, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, n_estimators=100,n_jobs=None, num_parallel_tree=None,predictor=None, random_state=None, ...))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="064b4f21-1fc7-4646-9751-108c0cbbd266" type="checkbox" ><label for="064b4f21-1fc7-4646-9751-108c0cbbd266" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown='ignore', sparse=False)</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="8239516d-467c-4346-82ae-95b2c33e2b8a" type="checkbox" ><label for="8239516d-467c-4346-82ae-95b2c33e2b8a" class="sk-toggleable__label sk-toggleable__label-arrow">XGBRegressor</label><div class="sk-toggleable__content"><pre>XGBRegressor(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None, feature_types=None,gamma=None, gpu_id=None, grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None, max_bin=None,max_cat_threshold=None, max_cat_to_onehot=None,max_delta_step=None, max_depth=5, max_leaves=None,min_child_weight=None, missing=nan, monotone_constraints=None,n_estimators=100, n_jobs=None, num_parallel_tree=None,predictor=None, random_state=None, ...)</pre></div></div></div></div></div></div></div>
|
217 |
+
|
218 |
+
## Evaluation Results
|
219 |
+
|
220 |
+
You can find the details about evaluation process and the evaluation results.
|
221 |
+
|
222 |
+
| Metric | Value |
|
223 |
+
|--------------------|---------|
|
224 |
+
| R squared | 0.382 |
|
225 |
+
| Mean Squared Error | 0.43055 |
|
226 |
+
|
227 |
+
# How to Get Started with the Model
|
228 |
+
|
229 |
+
[More Information Needed]
|
230 |
+
|
231 |
+
# Model Card Authors
|
232 |
+
|
233 |
+
This model card is written by following authors:
|
234 |
+
|
235 |
+
[More Information Needed]
|
236 |
+
|
237 |
+
# Model Card Contact
|
238 |
+
|
239 |
+
You can contact the model card authors through following channels:
|
240 |
+
[More Information Needed]
|
241 |
+
|
242 |
+
# Citation
|
243 |
+
|
244 |
+
Below you can find information related to citation.
|
245 |
+
|
246 |
+
**BibTeX:**
|
247 |
+
```
|
248 |
+
[More Information Needed]
|
249 |
+
```
|
250 |
+
|
251 |
+
# Feature Importance Plot
|
252 |
+
|
253 |
+
<style>table.eli5-weights tr:hover {filter: brightness(85%);}</style><p>Explained as: feature importances</p><pre>XGBoost feature importances; values are numbers 0 <= x <= 1;all values sum to 1.</pre><table class="eli5-weights eli5-feature-importances" style="border-collapse: collapse; border: none; margin-top: 0em; table-layout: auto;"><thead><tr style="border: none;"><th style="padding: 0 1em 0 0.5em; text-align: right; border: none;">Weight</th><th style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">Feature</th></tr></thead><tbody><tr style="background-color: hsl(120, 100.00%, 80.00%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.3592</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x26_5</td></tr><tr style="background-color: hsl(120, 100.00%, 94.98%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0499</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x26_1</td></tr><tr style="background-color: hsl(120, 100.00%, 95.83%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0383</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x26_4</td></tr><tr style="background-color: hsl(120, 100.00%, 96.28%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0325</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x23_3</td></tr><tr style="background-color: hsl(120, 100.00%, 96.85%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0256</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x28_0</td></tr><tr style="background-color: hsl(120, 100.00%, 97.09%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0229</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x30_10</td></tr><tr style="background-color: hsl(120, 100.00%, 97.15%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0222</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x8_health</td></tr><tr style="background-color: hsl(120, 100.00%, 97.32%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0203</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x29_10</td></tr><tr style="background-color: hsl(120, 100.00%, 97.35%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0200</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x14_2</td></tr><tr style="background-color: hsl(120, 100.00%, 97.35%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0200</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x7_3</td></tr><tr style="background-color: hsl(120, 100.00%, 97.36%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0199</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x31_16</td></tr><tr style="background-color: hsl(120, 100.00%, 97.55%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0179</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x28_8</td></tr><tr style="background-color: hsl(120, 100.00%, 97.78%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0155</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x28_6</td></tr><tr style="background-color: hsl(120, 100.00%, 97.78%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0155</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x11_mother</td></tr><tr style="background-color: hsl(120, 100.00%, 97.85%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0149</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x29_12</td></tr><tr style="background-color: hsl(120, 100.00%, 97.89%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0145</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x26_2</td></tr><tr style="background-color: hsl(120, 100.00%, 97.96%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0138</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x21_no</td></tr><tr style="background-color: hsl(120, 100.00%, 98.24%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0112</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x6_2</td></tr><tr style="background-color: hsl(120, 100.00%, 98.39%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0098</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x14_0</td></tr><tr style="background-color: hsl(120, 100.00%, 98.47%); border: none;"><td style="padding: 0 1em 0 0.5em; text-align: right; border: none;">0.0092</td><td style="padding: 0 0.5em 0 0.5em; text-align: left; border: none;">x18_no</td></tr><tr style="background-color: hsl(120, 100.00%, 98.47%); border: none;"><td colspan="2" style="padding: 0 0.5em 0 0.5em; text-align: center; border: none; white-space: nowrap;"><i>… 161 more …</i></td></tr></tbody></table>
|
config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sklearn": {
|
3 |
+
"columns": [
|
4 |
+
"school",
|
5 |
+
"sex",
|
6 |
+
"age",
|
7 |
+
"address",
|
8 |
+
"famsize",
|
9 |
+
"Pstatus",
|
10 |
+
"Medu",
|
11 |
+
"Fedu",
|
12 |
+
"Mjob",
|
13 |
+
"Fjob",
|
14 |
+
"reason",
|
15 |
+
"guardian",
|
16 |
+
"traveltime",
|
17 |
+
"studytime",
|
18 |
+
"failures",
|
19 |
+
"schoolsup",
|
20 |
+
"famsup",
|
21 |
+
"paid",
|
22 |
+
"activities",
|
23 |
+
"nursery",
|
24 |
+
"higher",
|
25 |
+
"internet",
|
26 |
+
"romantic",
|
27 |
+
"famrel",
|
28 |
+
"freetime",
|
29 |
+
"goout",
|
30 |
+
"Walc",
|
31 |
+
"health",
|
32 |
+
"absences",
|
33 |
+
"G1",
|
34 |
+
"G2",
|
35 |
+
"G3"
|
36 |
+
],
|
37 |
+
"environment": [
|
38 |
+
"scikit-learn=1.0.2, xgboost=1.7.3"
|
39 |
+
],
|
40 |
+
"example_input": {
|
41 |
+
"Fedu": [
|
42 |
+
3,
|
43 |
+
3,
|
44 |
+
3
|
45 |
+
],
|
46 |
+
"Fjob": [
|
47 |
+
"other",
|
48 |
+
"other",
|
49 |
+
"services"
|
50 |
+
],
|
51 |
+
"G1": [
|
52 |
+
12,
|
53 |
+
13,
|
54 |
+
8
|
55 |
+
],
|
56 |
+
"G2": [
|
57 |
+
13,
|
58 |
+
14,
|
59 |
+
7
|
60 |
+
],
|
61 |
+
"G3": [
|
62 |
+
12,
|
63 |
+
14,
|
64 |
+
0
|
65 |
+
],
|
66 |
+
"Medu": [
|
67 |
+
3,
|
68 |
+
2,
|
69 |
+
1
|
70 |
+
],
|
71 |
+
"Mjob": [
|
72 |
+
"services",
|
73 |
+
"other",
|
74 |
+
"at_home"
|
75 |
+
],
|
76 |
+
"Pstatus": [
|
77 |
+
"T",
|
78 |
+
"T",
|
79 |
+
"T"
|
80 |
+
],
|
81 |
+
"Walc": [
|
82 |
+
2,
|
83 |
+
1,
|
84 |
+
1
|
85 |
+
],
|
86 |
+
"absences": [
|
87 |
+
2,
|
88 |
+
0,
|
89 |
+
0
|
90 |
+
],
|
91 |
+
"activities": [
|
92 |
+
"yes",
|
93 |
+
"no",
|
94 |
+
"yes"
|
95 |
+
],
|
96 |
+
"address": [
|
97 |
+
"U",
|
98 |
+
"U",
|
99 |
+
"U"
|
100 |
+
],
|
101 |
+
"age": [
|
102 |
+
16,
|
103 |
+
16,
|
104 |
+
16
|
105 |
+
],
|
106 |
+
"failures": [
|
107 |
+
0,
|
108 |
+
0,
|
109 |
+
3
|
110 |
+
],
|
111 |
+
"famrel": [
|
112 |
+
4,
|
113 |
+
5,
|
114 |
+
4
|
115 |
+
],
|
116 |
+
"famsize": [
|
117 |
+
"GT3",
|
118 |
+
"GT3",
|
119 |
+
"GT3"
|
120 |
+
],
|
121 |
+
"famsup": [
|
122 |
+
"no",
|
123 |
+
"no",
|
124 |
+
"no"
|
125 |
+
],
|
126 |
+
"freetime": [
|
127 |
+
2,
|
128 |
+
3,
|
129 |
+
3
|
130 |
+
],
|
131 |
+
"goout": [
|
132 |
+
3,
|
133 |
+
3,
|
134 |
+
5
|
135 |
+
],
|
136 |
+
"guardian": [
|
137 |
+
"mother",
|
138 |
+
"father",
|
139 |
+
"mother"
|
140 |
+
],
|
141 |
+
"health": [
|
142 |
+
3,
|
143 |
+
3,
|
144 |
+
3
|
145 |
+
],
|
146 |
+
"higher": [
|
147 |
+
"yes",
|
148 |
+
"yes",
|
149 |
+
"yes"
|
150 |
+
],
|
151 |
+
"internet": [
|
152 |
+
"yes",
|
153 |
+
"yes",
|
154 |
+
"yes"
|
155 |
+
],
|
156 |
+
"nursery": [
|
157 |
+
"yes",
|
158 |
+
"yes",
|
159 |
+
"no"
|
160 |
+
],
|
161 |
+
"paid": [
|
162 |
+
"yes",
|
163 |
+
"no",
|
164 |
+
"no"
|
165 |
+
],
|
166 |
+
"reason": [
|
167 |
+
"home",
|
168 |
+
"home",
|
169 |
+
"home"
|
170 |
+
],
|
171 |
+
"romantic": [
|
172 |
+
"yes",
|
173 |
+
"no",
|
174 |
+
"yes"
|
175 |
+
],
|
176 |
+
"school": [
|
177 |
+
"GP",
|
178 |
+
"GP",
|
179 |
+
"GP"
|
180 |
+
],
|
181 |
+
"schoolsup": [
|
182 |
+
"no",
|
183 |
+
"no",
|
184 |
+
"no"
|
185 |
+
],
|
186 |
+
"sex": [
|
187 |
+
"M",
|
188 |
+
"M",
|
189 |
+
"F"
|
190 |
+
],
|
191 |
+
"studytime": [
|
192 |
+
2,
|
193 |
+
1,
|
194 |
+
2
|
195 |
+
],
|
196 |
+
"traveltime": [
|
197 |
+
1,
|
198 |
+
2,
|
199 |
+
1
|
200 |
+
]
|
201 |
+
},
|
202 |
+
"model": {
|
203 |
+
"file": "model.pkl"
|
204 |
+
},
|
205 |
+
"model_format": "pickle",
|
206 |
+
"task": "tabular-regression"
|
207 |
+
}
|
208 |
+
}
|
model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3a554fc0488edc63273dd53fdb1508ff0f4782b8973436fa20f12bf80b4da2a
|
3 |
+
size 186871
|