--- license: mit base_model: xlm-roberta-base tags: - generated_from_keras_callback model-index: - name: scott-clare1/multi-language-sms-detection results: [] --- # scott-clare1/multi-language-sms-detection This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0098 - Validation Loss: 0.0282 - Train Precision: 0.9825 - Train Recall: 0.9852 - Train F1: 0.9838 - Train Accuracy: 0.9934 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2487, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.0191 | 0.0275 | 0.9832 | 0.9848 | 0.9840 | 0.9932 | 0 | | 0.0116 | 0.0282 | 0.9825 | 0.9852 | 0.9838 | 0.9934 | 1 | | 0.0098 | 0.0282 | 0.9825 | 0.9852 | 0.9838 | 0.9934 | 2 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.1 - Tokenizers 0.13.3