File size: 2,098 Bytes
9283cf9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: other
library_name: peft
tags:
- llama-factory
- lora
- unsloth
- generated_from_trainer
base_model: cognitivecomputations/dolphin-2.9-llama3-8b
model-index:
- name: dolphin-2.9-llama3-8b-GER
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dolphin-2.9-llama3-8b-GER
This model is a fine-tuned version of [cognitivecomputations/dolphin-2.9-llama3-8b](https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b) on the identity, the alpaca-gpt4_de, the dolphin_de and the airoboros_de datasets.
It achieves the following results on the evaluation set:
- Loss: 0.9384
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 80
- num_epochs: 1.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.2054 | 0.12 | 100 | 1.0369 |
| 1.0667 | 0.24 | 200 | 1.0012 |
| 1.0751 | 0.35 | 300 | 0.9849 |
| 0.8838 | 0.47 | 400 | 0.9696 |
| 0.9846 | 0.59 | 500 | 0.9565 |
| 0.9523 | 0.71 | 600 | 0.9486 |
| 0.8567 | 0.82 | 700 | 0.9430 |
| 0.8284 | 0.94 | 800 | 0.9384 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.16.0
- Tokenizers 0.15.2 |