Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- km
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- hf-asr-leaderboard
|
7 |
+
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- openslr
|
10 |
+
- google/fleurs
|
11 |
+
- seanghay/km-speech-corpus
|
12 |
+
|
13 |
+
metrics:
|
14 |
+
- wer
|
15 |
+
|
16 |
+
model-index:
|
17 |
+
- name: Whisper Small Khmer Spaced - Seanghay Yath
|
18 |
+
results:
|
19 |
+
- task:
|
20 |
+
name: Automatic Speech Recognition
|
21 |
+
type: automatic-speech-recognition
|
22 |
+
dataset:
|
23 |
+
name: Google FLEURS
|
24 |
+
type: google/fleurs
|
25 |
+
config: km_kh
|
26 |
+
split: test
|
27 |
+
metrics:
|
28 |
+
- name: Wer
|
29 |
+
type: wer
|
30 |
+
value: 0.6165
|
31 |
+
---
|
32 |
+
|
33 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
34 |
+
should probably proofread and complete it, then remove this comment. -->
|
35 |
+
|
36 |
+
# whisper-small-khmer-v2
|
37 |
+
|
38 |
+
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
|
39 |
+
It achieves the following results on the evaluation set:
|
40 |
+
- Loss: 0.26
|
41 |
+
- Wer: 0.6165
|
42 |
+
|
43 |
+
## Model description
|
44 |
+
|
45 |
+
This model is fine-tuned with Google FLEURS & OpenSLR (SLR42) dataset.
|
46 |
+
|
47 |
+
- [ggml-model.bin](https://huggingface.co/seanghay/whisper-small-khmer/blob/main/ggml-model.bin)
|
48 |
+
- [model.onnx](https://huggingface.co/seanghay/whisper-small-khmer/blob/main/model.onnx)
|
49 |
+
|
50 |
+
```python
|
51 |
+
from transformers import pipeline
|
52 |
+
|
53 |
+
pipe = pipeline(
|
54 |
+
task="automatic-speech-recognition",
|
55 |
+
model="seanghay/whisper-small-khmer",
|
56 |
+
)
|
57 |
+
|
58 |
+
result = pipe("audio.wav",
|
59 |
+
generate_kwargs={
|
60 |
+
"language":"<|km|>",
|
61 |
+
"task":"transcribe"},
|
62 |
+
batch_size=16
|
63 |
+
)
|
64 |
+
|
65 |
+
print(result["text"])
|
66 |
+
```
|
67 |
+
|
68 |
+
|
69 |
+
## whisper.cpp
|
70 |
+
|
71 |
+
|
72 |
+
### 1. Transcode the input audio to 16kHz PCM
|
73 |
+
|
74 |
+
```shell
|
75 |
+
ffmpeg -i audio.ogg -ar 16000 -ac 1 -c:a pcm_s16le output.wav
|
76 |
+
```
|
77 |
+
|
78 |
+
### 2. Transcribe with whisper.cpp
|
79 |
+
|
80 |
+
```shell
|
81 |
+
./main -m ggml-model.bin -f output.wav --print-colors --language km
|
82 |
+
```
|