--- language: - km license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - openslr - google/fleurs - seanghay/km-speech-corpus metrics: - wer model-index: - name: Whisper Small Khmer Spaced - Seanghay Yath results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Google FLEURS type: google/fleurs config: km_kh split: test metrics: - name: Wer type: wer value: 0.6165 library_name: transformers pipeline_tag: automatic-speech-recognition --- # whisper-small-khmer-v2 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.26 - Wer: 0.6165 ## Model description This model is fine-tuned with Google FLEURS, OpenSLR (SLR42) and km-speech-corpus dataset. ```python from transformers import pipeline pipe = pipeline( task="automatic-speech-recognition", model="seanghay/whisper-small-khmer", ) result = pipe("audio.wav", generate_kwargs={ "language":"<|km|>", "task":"transcribe"}, batch_size=16 ) print(result["text"]) ``` ## whisper.cpp ### 1. Transcode the input audio to 16kHz PCM ```shell ffmpeg -i audio.ogg -ar 16000 -ac 1 -c:a pcm_s16le output.wav ```