Update README.md
Browse files
README.md
CHANGED
@@ -10,38 +10,305 @@ datasets:
|
|
10 |
[GitHub](https://github.com/OpenBMB/MiniCPM-V) | [Demo](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5)
|
11 |
|
12 |
|
13 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
**MiniCPM-Llama3-V 2.5** is the latest model in the MiniCPM-V series. The model is built on SigLip-400M and Llama3-8B-Instruct with a total of 8B parameters. It exhibits a significant performance improvement over MiniCPM-V 2.0. Notable features of MiniCPM-Llama3-V 2.5 include:
|
16 |
|
17 |
- 🔥 **Leading Performance.**
|
18 |
-
MiniCPM-Llama3-V 2.5 has achieved an average score of 65.1 on OpenCompass, a comprehensive evaluation over 11 popular benchmarks. **
|
19 |
|
20 |
- 💪 **Strong OCR Capabilities.**
|
21 |
-
MiniCPM-Llama3-V 2.5 can process images with any aspect ratio up to 1.8 million pixels, achieving an **700+ score on OCRBench, surpassing proprietary models such as GPT-4o, GPT-4V-0409, Qwen-VL-Max and Gemini Pro**. Based on recent user feedback, MiniCPM-Llama3-V 2.5 has now enhanced full-text OCR extraction, table-to-markdown conversion, and other high-utility capabilities, and has further strengthened its instruction-following and complex reasoning abilities, enhancing multimodal interaction experiences.
|
22 |
|
23 |
- 🏆 **Trustworthy Behavior.**
|
24 |
-
Leveraging the latest [RLAIF-V](https://github.com/RLHF-V/RLAIF-V/) method (the newest technology in the [RLHF-V](https://github.com/RLHF-V) [CVPR'24] series), MiniCPM-Llama3-V 2.5 exhibits trustworthy
|
25 |
|
26 |
- 🌏 **Multilingual Support.**
|
27 |
-
Thanks to
|
28 |
|
29 |
- 🚀 **Efficient Deployment.**
|
30 |
-
MiniCPM-Llama3-V 2.5 systematically employs **model quantization, CPU optimizations, NPU optimizations and compilation optimizations
|
31 |
|
32 |
### Evaluation <!-- omit in toc -->
|
33 |
|
34 |
-
<div align="center">
|
35 |
-
<img src=/openbmb/MiniCPM-Llama3-V-2_5/resolve/main/assets/MiniCPM-Llama3-V-2.5-peformance.png width=80% />
|
36 |
-
</div>
|
37 |
-
|
38 |
Results on TextVQA, DocVQA, OCRBench, OpenCompass MultiModal Avg , MME, MMBench, MMMU, MathVista, LLaVA Bench, RealWorld QA, Object HalBench.
|
39 |
-
<
|
40 |
-
<
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
|
44 |
-
|
45 |
<div align="center">
|
46 |
<img src="assets/llavabench_compare.png" width="80%" />
|
47 |
</div>
|
@@ -73,7 +340,7 @@ We deploy MiniCPM-Llama3-V 2.5 on end devices. The demo video is the raw screen
|
|
73 |
|
74 |
|
75 |
## Demo
|
76 |
-
Click here to try out the Demo of [MiniCPM-Llama3-V 2.5](
|
77 |
|
78 |
## Deployment on Mobile Phone
|
79 |
Coming soon.
|
|
|
10 |
[GitHub](https://github.com/OpenBMB/MiniCPM-V) | [Demo](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5)
|
11 |
|
12 |
|
13 |
+
## News <!-- omit in toc -->
|
14 |
+
|
15 |
+
* [2024.05.23] 🔍 We've released a comprehensive comparison between Phi-3-vision-128k-instruct and MiniCPM-Llama3-V 2.5, including benchmarks evaluations, and multilingual capabilities 🌟📊🌍. Click [here](./docs/compare_with_phi-3_vision.md) to view more details.
|
16 |
+
* [2024.05.20] We open-soure MiniCPM-Llama3-V 2.5, it has improved OCR capability and supports 30+ languages, representing the first end-side MLLM achieving GPT-4V level performance! We provide [efficient inference](#deployment-on-mobile-phone) and [simple fine-tuning](./finetune/readme.md). Try it now!
|
17 |
+
|
18 |
+
|
19 |
+
## Model Summary
|
20 |
|
21 |
**MiniCPM-Llama3-V 2.5** is the latest model in the MiniCPM-V series. The model is built on SigLip-400M and Llama3-8B-Instruct with a total of 8B parameters. It exhibits a significant performance improvement over MiniCPM-V 2.0. Notable features of MiniCPM-Llama3-V 2.5 include:
|
22 |
|
23 |
- 🔥 **Leading Performance.**
|
24 |
+
MiniCPM-Llama3-V 2.5 has achieved an average score of 65.1 on OpenCompass, a comprehensive evaluation over 11 popular benchmarks. **With only 8B parameters, it surpasses widely used proprietary models like GPT-4V-1106, Gemini Pro, Claude 3 and Qwen-VL-Max** and greatly outperforms other Llama 3-based MLLMs.
|
25 |
|
26 |
- 💪 **Strong OCR Capabilities.**
|
27 |
+
MiniCPM-Llama3-V 2.5 can process images with any aspect ratio and up to 1.8 million pixels (e.g., 1344x1344), achieving an **700+ score on OCRBench, surpassing proprietary models such as GPT-4o, GPT-4V-0409, Qwen-VL-Max and Gemini Pro**. Based on recent user feedback, MiniCPM-Llama3-V 2.5 has now enhanced full-text OCR extraction, table-to-markdown conversion, and other high-utility capabilities, and has further strengthened its instruction-following and complex reasoning abilities, enhancing multimodal interaction experiences.
|
28 |
|
29 |
- 🏆 **Trustworthy Behavior.**
|
30 |
+
Leveraging the latest [RLAIF-V](https://github.com/RLHF-V/RLAIF-V/) method (the newest technology in the [RLHF-V](https://github.com/RLHF-V) [CVPR'24] series), MiniCPM-Llama3-V 2.5 exhibits more trustworthy behavior. It achieves **10.3%** hallucination rate on Object HalBench, lower than GPT-4V-1106 (13.6%), achieving the best-level performance within the open-source community.
|
31 |
|
32 |
- 🌏 **Multilingual Support.**
|
33 |
+
Thanks to the strong multilingual capabilities of Llama 3 and the cross-lingual generalization technique from [VisCPM](https://github.com/OpenBMB/VisCPM), MiniCPM-Llama3-V 2.5 extends its bilingual (Chinese-English) multimodal capabilities to **over 30 languages including German, French, Spanish, Italian, Russian etc.** [All Supported Languages](./assets/minicpm-llama-v-2-5_languages.md).
|
34 |
|
35 |
- 🚀 **Efficient Deployment.**
|
36 |
+
MiniCPM-Llama3-V 2.5 systematically employs **model quantization, CPU optimizations, NPU optimizations and compilation optimizations**, achieving high-efficiency deployment on edge devices. For mobile phones with Qualcomm chips, we have integrated the NPU acceleration framework QNN into llama.cpp for the first time. After systematic optimization, MiniCPM-Llama3-V 2.5 has realized a **150-fold acceleration in multimodal large model end-side image encoding** and a **3-fold increase in language decoding speed**.
|
37 |
|
38 |
### Evaluation <!-- omit in toc -->
|
39 |
|
|
|
|
|
|
|
|
|
40 |
Results on TextVQA, DocVQA, OCRBench, OpenCompass MultiModal Avg , MME, MMBench, MMMU, MathVista, LLaVA Bench, RealWorld QA, Object HalBench.
|
41 |
+
<table style="margin: 0px auto;">
|
42 |
+
<thead>
|
43 |
+
<tr>
|
44 |
+
<th align="left">Model</th>
|
45 |
+
<th>Size</th>
|
46 |
+
<th>OCRBench</th>
|
47 |
+
<th>TextVQA val</th>
|
48 |
+
<th>DocVQA test</th>
|
49 |
+
<th>Open-Compass</th>
|
50 |
+
<th>MME</th>
|
51 |
+
<th>MMB test (en)</th>
|
52 |
+
<th>MMB test (cn)</th>
|
53 |
+
<th>MMMU val</th>
|
54 |
+
<th>Math-Vista</th>
|
55 |
+
<th>LLaVA Bench</th>
|
56 |
+
<th>RealWorld QA</th>
|
57 |
+
<th>Object HalBench</th>
|
58 |
+
</tr>
|
59 |
+
</thead>
|
60 |
+
<tbody align="center">
|
61 |
+
<tr>
|
62 |
+
<td colspan="14" align="left"><strong>Proprietary</strong></td>
|
63 |
+
</tr>
|
64 |
+
<tr>
|
65 |
+
<td nowrap="nowrap" align="left">Gemini Pro</td>
|
66 |
+
<td>-</td>
|
67 |
+
<td>680</td>
|
68 |
+
<td>74.6</td>
|
69 |
+
<td>88.1</td>
|
70 |
+
<td>62.9</td>
|
71 |
+
<td>2148.9</td>
|
72 |
+
<td>73.6</td>
|
73 |
+
<td>74.3</td>
|
74 |
+
<td>48.9</td>
|
75 |
+
<td>45.8</td>
|
76 |
+
<td>79.9</td>
|
77 |
+
<td>60.4</td>
|
78 |
+
<td>-</td>
|
79 |
+
</tr>
|
80 |
+
<tr>
|
81 |
+
<td nowrap="nowrap" align="left">GPT-4V (2023.11.06)</td>
|
82 |
+
<td>-</td>
|
83 |
+
<td>645</td>
|
84 |
+
<td>78.0</td>
|
85 |
+
<td>88.4</td>
|
86 |
+
<td>63.5</td>
|
87 |
+
<td>1771.5</td>
|
88 |
+
<td>77.0</td>
|
89 |
+
<td>74.4</td>
|
90 |
+
<td>53.8</td>
|
91 |
+
<td>47.8</td>
|
92 |
+
<td>93.1</td>
|
93 |
+
<td>63.0</td>
|
94 |
+
<td>86.4</td>
|
95 |
+
</tr>
|
96 |
+
<tr>
|
97 |
+
<td colspan="14" align="left"><strong>Open-source</strong></td>
|
98 |
+
</tr>
|
99 |
+
<tr>
|
100 |
+
<td nowrap="nowrap" align="left">Mini-Gemini</td>
|
101 |
+
<td>2.2B</td>
|
102 |
+
<td>-</td>
|
103 |
+
<td>56.2</td>
|
104 |
+
<td>34.2*</td>
|
105 |
+
<td>-</td>
|
106 |
+
<td>1653.0</td>
|
107 |
+
<td>-</td>
|
108 |
+
<td>-</td>
|
109 |
+
<td>31.7</td>
|
110 |
+
<td>-</td>
|
111 |
+
<td>-</td>
|
112 |
+
<td>-</td>
|
113 |
+
<td>-</td>
|
114 |
+
</tr>
|
115 |
+
<tr>
|
116 |
+
<td nowrap="nowrap" align="left">Qwen-VL-Chat</td>
|
117 |
+
<td>9.6B</td>
|
118 |
+
<td>488</td>
|
119 |
+
<td>61.5</td>
|
120 |
+
<td>62.6</td>
|
121 |
+
<td>51.6</td>
|
122 |
+
<td>1860.0</td>
|
123 |
+
<td>61.8</td>
|
124 |
+
<td>56.3</td>
|
125 |
+
<td>37.0</td>
|
126 |
+
<td>33.8</td>
|
127 |
+
<td>67.7</td>
|
128 |
+
<td>49.3</td>
|
129 |
+
<td>56.2</td>
|
130 |
+
</tr>
|
131 |
+
<tr>
|
132 |
+
<td nowrap="nowrap" align="left">DeepSeek-VL-7B</td>
|
133 |
+
<td>7.3B</td>
|
134 |
+
<td>435</td>
|
135 |
+
<td>64.7*</td>
|
136 |
+
<td>47.0*</td>
|
137 |
+
<td>54.6</td>
|
138 |
+
<td>1765.4</td>
|
139 |
+
<td>73.8</td>
|
140 |
+
<td>71.4</td>
|
141 |
+
<td>38.3</td>
|
142 |
+
<td>36.8</td>
|
143 |
+
<td>77.8</td>
|
144 |
+
<td>54.2</td>
|
145 |
+
<td>-</td>
|
146 |
+
</tr>
|
147 |
+
<tr>
|
148 |
+
<td nowrap="nowrap" align="left">Yi-VL-34B</td>
|
149 |
+
<td>34B</td>
|
150 |
+
<td>290</td>
|
151 |
+
<td>43.4*</td>
|
152 |
+
<td>16.9*</td>
|
153 |
+
<td>52.2</td>
|
154 |
+
<td><strong>2050.2</strong></td>
|
155 |
+
<td>72.4</td>
|
156 |
+
<td>70.7</td>
|
157 |
+
<td>45.1</td>
|
158 |
+
<td>30.7</td>
|
159 |
+
<td>62.3</td>
|
160 |
+
<td>54.8</td>
|
161 |
+
<td>79.3</td>
|
162 |
+
</tr>
|
163 |
+
<tr>
|
164 |
+
<td nowrap="nowrap" align="left">CogVLM-Chat</td>
|
165 |
+
<td>17.4B</td>
|
166 |
+
<td>590</td>
|
167 |
+
<td>70.4</td>
|
168 |
+
<td>33.3*</td>
|
169 |
+
<td>54.2</td>
|
170 |
+
<td>1736.6</td>
|
171 |
+
<td>65.8</td>
|
172 |
+
<td>55.9</td>
|
173 |
+
<td>37.3</td>
|
174 |
+
<td>34.7</td>
|
175 |
+
<td>73.9</td>
|
176 |
+
<td>60.3</td>
|
177 |
+
<td>73.6</td>
|
178 |
+
</tr>
|
179 |
+
<tr>
|
180 |
+
<td nowrap="nowrap" align="left">TextMonkey</td>
|
181 |
+
<td>9.7B</td>
|
182 |
+
<td>558</td>
|
183 |
+
<td>64.3</td>
|
184 |
+
<td>66.7</td>
|
185 |
+
<td>-</td>
|
186 |
+
<td>-</td>
|
187 |
+
<td>-</td>
|
188 |
+
<td>-</td>
|
189 |
+
<td>-</td>
|
190 |
+
<td>-</td>
|
191 |
+
<td>-</td>
|
192 |
+
<td>-</td>
|
193 |
+
<td>-</td>
|
194 |
+
</tr>
|
195 |
+
<tr>
|
196 |
+
<td nowrap="nowrap" align="left">Idefics2</td>
|
197 |
+
<td>8.0B</td>
|
198 |
+
<td>-</td>
|
199 |
+
<td>73.0</td>
|
200 |
+
<td>74.0</td>
|
201 |
+
<td>57.2</td>
|
202 |
+
<td>1847.6</td>
|
203 |
+
<td>75.7</td>
|
204 |
+
<td>68.6</td>
|
205 |
+
<td>45.2</td>
|
206 |
+
<td>52.2</td>
|
207 |
+
<td>49.1</td>
|
208 |
+
<td>60.7</td>
|
209 |
+
<td>-</td>
|
210 |
+
</tr>
|
211 |
+
<tr>
|
212 |
+
<td nowrap="nowrap" align="left">Bunny-LLama-3-8B</td>
|
213 |
+
<td>8.4B</td>
|
214 |
+
<td>-</td>
|
215 |
+
<td>-</td>
|
216 |
+
<td>-</td>
|
217 |
+
<td>54.3</td>
|
218 |
+
<td>1920.3</td>
|
219 |
+
<td>77.0</td>
|
220 |
+
<td>73.9</td>
|
221 |
+
<td>41.3</td>
|
222 |
+
<td>31.5</td>
|
223 |
+
<td>61.2</td>
|
224 |
+
<td>58.8</td>
|
225 |
+
<td>-</td>
|
226 |
+
</tr>
|
227 |
+
<tr>
|
228 |
+
<td nowrap="nowrap" align="left">LLaVA-NeXT Llama-3-8B</td>
|
229 |
+
<td>8.4B</td>
|
230 |
+
<td>-</td>
|
231 |
+
<td>-</td>
|
232 |
+
<td>78.2</td>
|
233 |
+
<td>-</td>
|
234 |
+
<td>1971.5</td>
|
235 |
+
<td>-</td>
|
236 |
+
<td>-</td>
|
237 |
+
<td>41.7</td>
|
238 |
+
<td>37.5</td>
|
239 |
+
<td>80.1</td>
|
240 |
+
<td>60.0</td>
|
241 |
+
<td>-</td>
|
242 |
+
</tr>
|
243 |
+
<tr>
|
244 |
+
<td nowrap="nowrap" align="left">Phi-3-vision-128k-instruct</td>
|
245 |
+
<td>4.2B</td>
|
246 |
+
<td>639*</td>
|
247 |
+
<td>70.9</td>
|
248 |
+
<td>-</td>
|
249 |
+
<td>-</td>
|
250 |
+
<td>1537.5*</td>
|
251 |
+
<td>-</td>
|
252 |
+
<td>-</td>
|
253 |
+
<td>40.4</td>
|
254 |
+
<td>44.5</td>
|
255 |
+
<td>64.2*</td>
|
256 |
+
<td>58.8*</td>
|
257 |
+
<td>-</td>
|
258 |
+
</tr>
|
259 |
+
<tr style="background-color: #e6f2ff;">
|
260 |
+
<td nowrap="nowrap" align="left">MiniCPM-V 1.0</td>
|
261 |
+
<td>2.8B</td>
|
262 |
+
<td>366</td>
|
263 |
+
<td>60.6</td>
|
264 |
+
<td>38.2</td>
|
265 |
+
<td>47.5</td>
|
266 |
+
<td>1650.2</td>
|
267 |
+
<td>64.1</td>
|
268 |
+
<td>62.6</td>
|
269 |
+
<td>38.3</td>
|
270 |
+
<td>28.9</td>
|
271 |
+
<td>51.3</td>
|
272 |
+
<td>51.2</td>
|
273 |
+
<td>78.4</td>
|
274 |
+
</tr>
|
275 |
+
<tr style="background-color: #e6f2ff;">
|
276 |
+
<td nowrap="nowrap" align="left">MiniCPM-V 2.0</td>
|
277 |
+
<td>2.8B</td>
|
278 |
+
<td>605</td>
|
279 |
+
<td>74.1</td>
|
280 |
+
<td>71.9</td>
|
281 |
+
<td>54.5</td>
|
282 |
+
<td>1808.6</td>
|
283 |
+
<td>69.1</td>
|
284 |
+
<td>66.5</td>
|
285 |
+
<td>38.2</td>
|
286 |
+
<td>38.7</td>
|
287 |
+
<td>69.2</td>
|
288 |
+
<td>55.8</td>
|
289 |
+
<td>85.5</td>
|
290 |
+
</tr>
|
291 |
+
<tr style="background-color: #e6f2ff;">
|
292 |
+
<td nowrap="nowrap" align="left">MiniCPM-Llama3-V 2.5</td>
|
293 |
+
<td>8.5B</td>
|
294 |
+
<td><strong>725</strong></td>
|
295 |
+
<td><strong>76.6</strong></td>
|
296 |
+
<td><strong>84.8</strong></td>
|
297 |
+
<td><strong>65.1</strong></td>
|
298 |
+
<td>2024.6</td>
|
299 |
+
<td><strong>77.2</strong></td>
|
300 |
+
<td><strong>74.2</strong></td>
|
301 |
+
<td><strong>45.8</strong></td>
|
302 |
+
<td><strong>54.3</strong></td>
|
303 |
+
<td><strong>86.7</strong></td>
|
304 |
+
<td><strong>63.5</strong></td>
|
305 |
+
<td><strong>89.7</strong></td>
|
306 |
+
</tr>
|
307 |
+
</tbody>
|
308 |
+
</table>
|
309 |
|
310 |
|
311 |
+
Evaluation results of multilingual LLaVA Bench
|
312 |
<div align="center">
|
313 |
<img src="assets/llavabench_compare.png" width="80%" />
|
314 |
</div>
|
|
|
340 |
|
341 |
|
342 |
## Demo
|
343 |
+
Click here to try out the Demo of [MiniCPM-Llama3-V 2.5](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5).
|
344 |
|
345 |
## Deployment on Mobile Phone
|
346 |
Coming soon.
|