File size: 4,346 Bytes
70a39e8
 
 
133ccba
70a39e8
 
 
 
 
 
 
 
 
 
 
 
 
3ef8ab9
70a39e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133ccba
70a39e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
library_name: transformers
base_model: meta-llama/Meta-Llama-3-8B-Instruct
license: llama3
language:
- pt
tags:
- code
- sql
- finetuned
- portugues-BR
---
**Lloro SQL**

<img src="https://cdn-uploads.huggingface.co/production/uploads/653176dc69fffcfe1543860a/h0kNd9OTEu1QdGNjHKXoq.png" width="300" alt="Lloro-7b Logo"/>


Lloro SQL, developed by Semantix Research Labs, is a language Model that was trained to effectively transform Portuguese queries into SQL Code. It is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct,  that was trained on GretelAI public datasets.  The fine-tuning process was performed using the QLORA metodology on a GPU A100 with 40 GB of RAM.

 

**Model description**


Model type: A 7B parameter  fine-tuned on GretelAI public datasets.

Language(s) (NLP): Primarily Portuguese, but the model is capable to understand English as well

Finetuned from model: meta-llama/Meta-Llama-3-8B-Instruct

 

**What is Lloro's intended use(s)?**


Lloro is built for Text2SQL in Portuguese contexts .

Input : Text

Output : Text (Code)


**Usage**


Using an OpenAI compatible inference server (like [vLLM](https://docs.vllm.ai/en/latest/index.html))

```python
from openai import OpenAI
client = OpenAI(
    api_key="EMPTY",
    base_url="http://localhost:8000/v1",
)
def generate_responses(instruction, client=client):
    
    chat_response = client.chat.completions.create(
    model=<model>,
    messages=[
        {"role": "system", "content": "Você escreve a instrução SQL que responde às perguntas feitas. Você NÃO FORNECE NENHUM COMENTÁRIO OU EXPLICAÇÃO sobre o que o código faz, apenas a instrução SQL terminando em ponto e vírgula. Você utiliza todos os comandos disponíveis na especificação SQL, como: [SELECT, WHERE, ORDER, LIMIT, CAST, AS, JOIN]."},
        {"role": "user", "content": instruction},
    ]
)
    
    return chat_response.choices[0].message.content

output = generate_responses(user_prompt)

```
 


**Params**
Training Parameters
| Params                           | Training Data                   | Examples                        | Tokens     | LR     |
|----------------------------------|---------------------------------|---------------------------------|------------|--------|
| 8B                               | GretelAI public datasets        | 65000                           | 18.000.000 | 9e-5   |
 

**Model Sources**

GretelAI: https://huggingface.co/datasets/gretelai/synthetic_text_to_sql

 

**Performance**
| Modelo         | LLM as Judge | Code Bleu Score | Rouge-L |  CodeBert- Precision | CodeBert-Recall | CodeBert-F1 | CodeBert-F3 |
|----------------|--------------|-----------------|---------|----------------------|-----------------|-------------|-------------|
| Llama 3 - Base | 65.48%       | 0.4583          | 0.6361  |  0.8815              | 0.8871          | 0.8835      | 0.8862      |
| Llama 3 - FT   | 62.57%       | 0.6512          | 0.7965  |  0.9458              | 0.9469          | 0.9459      | 0.9466      |


**Training Infos:**
The following hyperparameters were used during training:

| Parameter                 | Value                |
|---------------------------|----------------------|
| learning_rate             | 1e-4                 |
| weight_decay              | 0.001               |
| train_batch_size          | 16                    |
| eval_batch_size           | 8                   |
| seed                      | 42                   |
| optimizer                 | Adam - adamw_8bit |
| lr_scheduler_type         | cosine               |
| num_epochs                | 3.0                  |

**QLoRA hyperparameters**
The following parameters related with the Quantized Low-Rank Adaptation and Quantization were used during training:

| Parameter       | Value   |
|-----------------|---------|
| lora_r          | 16      |
| lora_alpha      | 64      |
| lora_dropout    | 0       |



**Framework versions**
| Library       | Version   |
|---------------|-----------|
| accelerate    | 0.21.0    |
| bitsandbytes  | 0.42.0    |
| Datasets      | 2.14.3    |
| peft          | 0.4.0     |
| Pytorch       | 2.0.1     |
| safetensors   | 0.4.1     |
| scikit-image  | 0.22.0    |
| scikit-learn  | 1.3.2     |
| Tokenizers    | 0.14.1    |
| Transformers  | 4.37.2    |
| trl           | 0.4.7     |