rafaelgeraldini commited on
Commit
58b2ffe
·
verified ·
1 Parent(s): 4e55fe5

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +164 -0
README.md ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: codellama/CodeLlama-7b-Instruct-hf
4
+ license: llama2
5
+ datasets:
6
+ - semantixai/LloroV3
7
+ language:
8
+ - pt
9
+ tags:
10
+ - code
11
+ - analytics
12
+ - analise-dados
13
+ - portugues-BR
14
+
15
+ co2_eq_emissions:
16
+ emissions: 1320
17
+ source: "Lacoste, Alexandre, et al. “Quantifying the Carbon Emissions of Machine Learning.” ArXiv (Cornell University), 21 Oct. 2019, https://doi.org/10.48550/arxiv.1910.09700."
18
+ training_type: "fine-tuning"
19
+ geographical_location: "Council Bluffs, Iowa, USA."
20
+ hardware_used: "1 A100 40GB GPU"
21
+ ---
22
+
23
+ **Lloro 7B**
24
+
25
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/653176dc69fffcfe1543860a/h0kNd9OTEu1QdGNjHKXoq.png" width="300" alt="Lloro-7b Logo"/>
26
+
27
+ Lloro, developed by Semantix Research Labs , is a language Model that was trained to effectively perform Portuguese Data Analysis in Python. It is a fine-tuned version of codellama/CodeLlama-7b-Instruct-hf, that was trained on synthetic datasets . The fine-tuning process was performed using the QLORA metodology on a GPU V100 with 16 GB of RAM.
28
+
29
+ **Model description**
30
+
31
+ Model type: A 7B parameter fine-tuned on synthetic datasets.
32
+
33
+ Language(s) (NLP): Primarily Portuguese, but the model is capable to understand English as well
34
+
35
+ Finetuned from model: codellama/CodeLlama-7b-Instruct-hf
36
+
37
+ **What is Lloro's intended use(s)?**
38
+
39
+ Lloro is built for data analysis in Portuguese contexts .
40
+
41
+ Input : Text
42
+
43
+ Output : Text (Code)
44
+
45
+ **Usage**
46
+
47
+ Using Transformers
48
+
49
+ ```python
50
+ #Import required libraries
51
+ import torch
52
+ from transformers import (
53
+ AutoModelForCausalLM,
54
+ AutoTokenizer
55
+ )
56
+
57
+ #Load Model
58
+ model_name = "semantixai/LloroV2"
59
+ base_model = AutoModelForCausalLM.from_pretrained(
60
+ model_name,
61
+ return_dict=True,
62
+ torch_dtype=torch.float16,
63
+ device_map="auto",
64
+ )
65
+
66
+ #Load Tokenizer
67
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
68
+
69
+
70
+ #Define Prompt
71
+ user_prompt = "Desenvolva um algoritmo em Python para calcular a média e a mediana dos preços de vendas por tipo de material do produto."
72
+ system = "Provide answers in Python without explanations, only the code"
73
+ prompt_template = f"[INST] <<SYS>>\\n{system}\\n<</SYS>>\\n\\n{user_prompt}[/INST]"
74
+
75
+ #Call the model
76
+ input_ids = tokenizer([prompt_template], return_tensors="pt")["input_ids"].to("cuda")
77
+
78
+
79
+ outputs = base_model.generate(
80
+ input_ids,
81
+ do_sample=True,
82
+ top_p=0.95,
83
+ max_new_tokens=1024,
84
+ temperature=0.1,
85
+ )
86
+
87
+ #Decode and retrieve Output
88
+ output_text = tokenizer.batch_decode(outputs, skip_prompt=True, skip_special_tokens=False)
89
+ display(output_text)
90
+ ```
91
+
92
+ Using an OpenAI compatible inference server (like [vLLM](https://docs.vllm.ai/en/latest/index.html))
93
+
94
+ ```python
95
+ from openai import OpenAI
96
+
97
+ client = OpenAI(
98
+ api_key="EMPTY",
99
+ base_url="http://localhost:8000/v1",
100
+ )
101
+ user_prompt = "Desenvolva um algoritmo em Python para calcular a média e a mediana dos preços de vendas por tipo de material do produto."
102
+ completion = client.chat.completions.create(temperature=0.1,frequency_penalty=0.1,model="semantixai/Lloro",messages=[{"role":"system","content":"Provide answers in Python without explanations, only the code"},{"role":"user","content":user_prompt}])
103
+ ```
104
+
105
+ **Params**
106
+ Training Parameters
107
+ | Params | Training Data | Examples | Tokens | LR |
108
+ |----------------------------------|-----------------------------------|---------------------------------|----------|--------|
109
+ | 7B | Pairs synthetic instructions/code | 74222 | 3 031 188| 2e-4 |
110
+
111
+ **Model Sources**
112
+
113
+ Test Dataset Repository: <https://huggingface.co/datasets/semantixai/LloroV3>
114
+
115
+ Model Dates Lloro was trained between February 2024 and April 2024.
116
+
117
+ **Performance**
118
+ | Modelo | LLM as Judge | Code Bleu Score | Rouge-L | CodeBert- Precision | CodeBert-Recall | CodeBert-F1 | CodeBert-F3 |
119
+ |----------------|--------------|------------------|---------|----------------------|-----------------|-------------|-------------|
120
+ | GPT 3.5 | 91.22% | 0.2745 | 0.2189 | 0.7502 | 0.7146 | 0.7303 | 0.7175 |
121
+ | Instruct -Base | 88.77% | 0.3666 | 0.3351 | 0.8244 | 0.8025 | 0.8121 | 0.8052 |
122
+ | Instruct -FT | 94.06% | 0.5584 | 0.6209 | 0.8943 | 0.9033 | 0.8979 | 0.9021 |
123
+
124
+ **Training Infos:**
125
+ The following hyperparameters were used during training:
126
+
127
+ | Parameter | Value |
128
+ |---------------------------|--------------------------|
129
+ | learning_rate | 2e-4 |
130
+ | weight_decay | 0.0001 |
131
+ | train_batch_size | 7 |
132
+ | eval_batch_size | 7 |
133
+ | seed | 42 |
134
+ | optimizer | Adam - paged_adamw_32bit |
135
+ | lr_scheduler_type | cosine |
136
+ | lr_scheduler_warmup_ratio | 0.06 |
137
+ | num_epochs | 4.0 |
138
+
139
+ **QLoRA hyperparameters**
140
+ The following parameters related with the Quantized Low-Rank Adaptation and Quantization were used during training:
141
+
142
+ | Parameter | Value |
143
+ |------------------|-----------|
144
+ | lora_r | 64 |
145
+ | lora_alpha | 256 |
146
+ | lora_dropout | 0.1 |
147
+ | storage_dtype | "nf4" |
148
+ | compute_dtype | "bfloat16"|
149
+
150
+ **Experiments**
151
+ | Model | Epochs | Overfitting | Final Epochs | Training Hours | CO2 Emission (Kg) |
152
+ |-----------------------|--------|-------------|--------------|-----------------|-------------------|
153
+ | Code Llama Instruct | 1 | No | 1 | 3.01 | 0.43 |
154
+ | Code Llama Instruct | 4 | Yes | 3 | 9.25 | 1.32 |
155
+
156
+ **Framework versions**
157
+
158
+ | Library | Version |
159
+ |---------------|-----------|
160
+ | bitsandbytes | 0.40.2 |
161
+ | Datasets | 2.14.3 |
162
+ | Pytorch | 2.0.1 |
163
+ | Tokenizers | 0.14.1 |
164
+ | Transformers | 4.34.0 |