--- library_name: transformers base_model: codellama/CodeLlama-7b-Instruct-hf license: llama2 datasets: - semantixai/LloroV3 language: - pt tags: - code - analytics - analise-dados - portugues-BR co2_eq_emissions: emissions: 1320 source: "Lacoste, Alexandre, et al. “Quantifying the Carbon Emissions of Machine Learning.” ArXiv (Cornell University), 21 Oct. 2019, https://doi.org/10.48550/arxiv.1910.09700." training_type: "fine-tuning" geographical_location: "Council Bluffs, Iowa, USA." hardware_used: "1 A100 40GB GPU" --- **Lloro 7B** Lloro-7b Logo Lloro, developed by Semantix Research Labs , is a language Model that was trained to effectively perform Portuguese Data Analysis in Python. It is a fine-tuned version of codellama/CodeLlama-7b-Instruct-hf, that was trained on synthetic datasets . The fine-tuning process was performed using the QLORA metodology on a GPU V100 with 16 GB of RAM. **Model description** Model type: A 7B parameter fine-tuned on synthetic datasets. Language(s) (NLP): Primarily Portuguese, but the model is capable to understand English as well Finetuned from model: codellama/CodeLlama-7b-Instruct-hf **What is Lloro's intended use(s)?** Lloro is built for data analysis in Portuguese contexts . Input : Text Output : Text (Code) **Usage** Using Transformers ```python #Import required libraries import torch from transformers import ( AutoModelForCausalLM, AutoTokenizer ) #Load Model model_name = "semantixai/LloroV2" base_model = AutoModelForCausalLM.from_pretrained( model_name, return_dict=True, torch_dtype=torch.float16, device_map="auto", ) #Load Tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) #Define Prompt user_prompt = "Desenvolva um algoritmo em Python para calcular a média e a mediana dos preços de vendas por tipo de material do produto." system = "Provide answers in Python without explanations, only the code" prompt_template = f"[INST] <>\\n{system}\\n<>\\n\\n{user_prompt}[/INST]" #Call the model input_ids = tokenizer([prompt_template], return_tensors="pt")["input_ids"].to("cuda") outputs = base_model.generate( input_ids, do_sample=True, top_p=0.95, max_new_tokens=1024, temperature=0.1, ) #Decode and retrieve Output output_text = tokenizer.batch_decode(outputs, skip_prompt=True, skip_special_tokens=False) display(output_text) ``` Using an OpenAI compatible inference server (like [vLLM](https://docs.vllm.ai/en/latest/index.html)) ```python from openai import OpenAI client = OpenAI( api_key="EMPTY", base_url="http://localhost:8000/v1", ) user_prompt = "Desenvolva um algoritmo em Python para calcular a média e a mediana dos preços de vendas por tipo de material do produto." completion = client.chat.completions.create(temperature=0.1,frequency_penalty=0.1,model="semantixai/Lloro",messages=[{"role":"system","content":"Provide answers in Python without explanations, only the code"},{"role":"user","content":user_prompt}]) ``` **Params** Training Parameters | Params | Training Data | Examples | Tokens | LR | |----------------------------------|-----------------------------------|---------------------------------|----------|--------| | 7B | Pairs synthetic instructions/code | 74222 | 3 031 188| 2e-4 | **Model Sources** Test Dataset Repository: Model Dates Lloro was trained between February 2024 and April 2024. **Performance** | Modelo | LLM as Judge | Code Bleu Score | Rouge-L | CodeBert- Precision | CodeBert-Recall | CodeBert-F1 | CodeBert-F3 | |----------------|--------------|------------------|---------|----------------------|-----------------|-------------|-------------| | GPT 3.5 | 91.22% | 0.2745 | 0.2189 | 0.7502 | 0.7146 | 0.7303 | 0.7175 | | Instruct -Base | 88.77% | 0.3666 | 0.3351 | 0.8244 | 0.8025 | 0.8121 | 0.8052 | | Instruct -FT | 94.06% | 0.5584 | 0.6209 | 0.8943 | 0.9033 | 0.8979 | 0.9021 | **Training Infos:** The following hyperparameters were used during training: | Parameter | Value | |---------------------------|--------------------------| | learning_rate | 2e-4 | | weight_decay | 0.0001 | | train_batch_size | 7 | | eval_batch_size | 7 | | seed | 42 | | optimizer | Adam - paged_adamw_32bit | | lr_scheduler_type | cosine | | lr_scheduler_warmup_ratio | 0.06 | | num_epochs | 4.0 | **QLoRA hyperparameters** The following parameters related with the Quantized Low-Rank Adaptation and Quantization were used during training: | Parameter | Value | |------------------|-----------| | lora_r | 64 | | lora_alpha | 256 | | lora_dropout | 0.1 | | storage_dtype | "nf4" | | compute_dtype | "bfloat16"| **Experiments** | Model | Epochs | Overfitting | Final Epochs | Training Hours | CO2 Emission (Kg) | |-----------------------|--------|-------------|--------------|-----------------|-------------------| | Code Llama Instruct | 1 | No | 1 | 3.01 | 0.43 | | Code Llama Instruct | 4 | Yes | 3 | 9.25 | 1.32 | **Framework versions** | Library | Version | |---------------|-----------| | bitsandbytes | 0.40.2 | | Datasets | 2.14.3 | | Pytorch | 2.0.1 | | Tokenizers | 0.14.1 | | Transformers | 4.34.0 |