Robin Ding commited on
Commit
ff39b20
1 Parent(s): 1bf86fc

update README

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md CHANGED
@@ -1,5 +1,81 @@
1
  ---
2
  license: other
 
3
  license_name: deepseek
4
  license_link: https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/LICENSE-MODEL
 
5
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: other
3
+ library_name: transformers
4
  license_name: deepseek
5
  license_link: https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/LICENSE-MODEL
6
+ pipeline_tag: text-generation
7
  ---
8
+ # 🤔 SemCoder: Training Code Language Models with Comprehensive Semantics Reasoning
9
+
10
+ > Refer to our GitHub repo [ARiSE-Lab/SemCoder](https://github.com/ARiSE-Lab/SemCoder/) for detailed introduction to SemCoder!
11
+
12
+ ## Model Details
13
+
14
+
15
+ Use the code below to get started with the model. Make sure you installed the [transformers](https://huggingface.co/docs/transformers/index) library.
16
+
17
+ ```python
18
+ from transformers import pipeline
19
+ import torch
20
+
21
+ generator = pipeline(
22
+ model="semcoder/semcoder_1030",
23
+ task="text-generation",
24
+ torch_dtype=torch.float16,
25
+ device_map="auto",
26
+ )
27
+
28
+ # Generate Code
29
+
30
+ CODEGEN_REQUEST = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable <Code> according to <NL_Description>
31
+
32
+ <NL_Description>
33
+ {desc}
34
+
35
+ <Code>
36
+ """
37
+ desc = """You are tasked with implementing a Python class that simulates a simple version of a "To-Do List" application. The class should have the following functionalities:
38
+ 1. Add a new task to the to-do list.
39
+ 2. Mark a task as completed.
40
+ 3. Display all tasks in the to-do list.
41
+ 4. Display only the incomplete tasks in the to-do list.
42
+ """
43
+
44
+ prompt = CODEGEN_REQUEST.format(desc=desc)
45
+ result = generator(prompt, max_length=2048, num_return_sequences=1, temperature=0.0)
46
+ code = result[0]["generated_text"].split("```python")[1].split("```")[0]
47
+ print(code)
48
+
49
+ # Understand Code with Monologues
50
+
51
+ FWD_MNL_REQUEST = """Simulate the Execution: You are given a Python function and an assertion containing a function input. Complete the assertion containing the execution output corresponding to the given input in [ANSWER] and [/ANSWER] tags.
52
+ {code}
53
+ """
54
+
55
+ tests = """
56
+ todo_list = ToDoList()
57
+ todo_list.add_task("Buy groceries")
58
+ todo_list.add_task("Complete assignment")
59
+ todo_list.mark_completed("Buy groceries")
60
+ assert todo_list.tasks == ???
61
+ """
62
+ code += tests
63
+ prompt = FWD_MNL_REQUEST.format(code=code)
64
+ result = generator(prompt, max_length=2048, num_return_sequences=1, temperature=0.0)
65
+ print(result[0]["generated_text"])
66
+ ```
67
+
68
+ ## Citation
69
+
70
+ ```bibtex
71
+ @article{ding2024semcoder,
72
+ title={SemCoder: Training Code Language Models with Comprehensive Semantics},
73
+ author={Yangruibo Ding and Jinjun Peng and Marcus J. Min and Gail Kaiser and Junfeng Yang and Baishakhi Ray},
74
+ journal={arXiv preprint arXiv:2406.01006},
75
+ year={2024}
76
+ }
77
+ ```
78
+
79
+ ## Important Note
80
+
81
+ SemCoder models are trained on the synthetic data generated by OpenAI models. Please pay attention to OpenAI's [terms of use](https://openai.com/policies/terms-of-use) when using the models and the datasets. SemCoder will not compete with OpenAI's commercial products.