upload
Browse files- 1_Pooling/config.json +7 -0
- 2_Dense/config.json +1 -0
- 2_Dense/pytorch_model.bin +3 -0
- README.md +51 -0
- config.json +57 -0
- config_sentence_transformers.json +7 -0
- convert.ipynb +981 -0
- convert_to_fp16.py +9 -0
- modules.json +26 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +1 -0
- spiece.model +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
2_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 768, "out_features": 768, "bias": false, "activation_function": "torch.nn.modules.linear.Identity"}
|
2_Dense/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9319f42e32d06c3e599b0d0d2aeb23bdeacfe71d019238d86d6413a778be8c1d
|
3 |
+
size 2360171
|
README.md
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
language: en
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- feature-extraction
|
8 |
+
- sentence-similarity
|
9 |
+
- transformers
|
10 |
+
---
|
11 |
+
|
12 |
+
# sentence-transformers/sentence-t5-base
|
13 |
+
|
14 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space. The model works well for sentence similarity tasks, but doesn't perform that well for semantic search tasks.
|
15 |
+
|
16 |
+
This model was converted from the Tensorflow model [st5-base-1](https://tfhub.dev/google/sentence-t5/st5-base/1) to PyTorch. When using this model, have a look at the publication: [Sentence-T5: Scalable sentence encoders from pre-trained text-to-text models](https://arxiv.org/abs/2108.08877). The tfhub model and this PyTorch model can produce slightly different embeddings, however, when run on the same benchmarks, they produce identical results.
|
17 |
+
|
18 |
+
The model uses only the encoder from a T5-base model. The weights are stored in FP16.
|
19 |
+
|
20 |
+
|
21 |
+
## Usage (Sentence-Transformers)
|
22 |
+
|
23 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
24 |
+
|
25 |
+
```
|
26 |
+
pip install -U sentence-transformers
|
27 |
+
```
|
28 |
+
|
29 |
+
Then you can use the model like this:
|
30 |
+
|
31 |
+
```python
|
32 |
+
from sentence_transformers import SentenceTransformer
|
33 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
34 |
+
|
35 |
+
model = SentenceTransformer('sentence-transformers/sentence-t5-base')
|
36 |
+
embeddings = model.encode(sentences)
|
37 |
+
print(embeddings)
|
38 |
+
```
|
39 |
+
|
40 |
+
The model requires sentence-transformers version 2.2.0 or newer.
|
41 |
+
|
42 |
+
## Evaluation Results
|
43 |
+
|
44 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/sentence-t5-base)
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
## Citing & Authors
|
49 |
+
|
50 |
+
If you find this model helpful, please cite the respective publication:
|
51 |
+
[Sentence-T5: Scalable sentence encoders from pre-trained text-to-text models](https://arxiv.org/abs/2108.08877)
|
config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "models/sentence-t5-base",
|
3 |
+
"architectures": [
|
4 |
+
"T5EncoderModel"
|
5 |
+
],
|
6 |
+
"d_ff": 3072,
|
7 |
+
"d_kv": 64,
|
8 |
+
"d_model": 768,
|
9 |
+
"decoder_start_token_id": 0,
|
10 |
+
"dropout_rate": 0.1,
|
11 |
+
"eos_token_id": 1,
|
12 |
+
"feed_forward_proj": "relu",
|
13 |
+
"initializer_factor": 1.0,
|
14 |
+
"is_encoder_decoder": true,
|
15 |
+
"layer_norm_epsilon": 1e-06,
|
16 |
+
"model_type": "t5",
|
17 |
+
"n_positions": 512,
|
18 |
+
"num_decoder_layers": 12,
|
19 |
+
"num_heads": 12,
|
20 |
+
"num_layers": 12,
|
21 |
+
"output_past": true,
|
22 |
+
"pad_token_id": 0,
|
23 |
+
"relative_attention_num_buckets": 32,
|
24 |
+
"task_specific_params": {
|
25 |
+
"summarization": {
|
26 |
+
"early_stopping": true,
|
27 |
+
"length_penalty": 2.0,
|
28 |
+
"max_length": 200,
|
29 |
+
"min_length": 30,
|
30 |
+
"no_repeat_ngram_size": 3,
|
31 |
+
"num_beams": 4,
|
32 |
+
"prefix": "summarize: "
|
33 |
+
},
|
34 |
+
"translation_en_to_de": {
|
35 |
+
"early_stopping": true,
|
36 |
+
"max_length": 300,
|
37 |
+
"num_beams": 4,
|
38 |
+
"prefix": "translate English to German: "
|
39 |
+
},
|
40 |
+
"translation_en_to_fr": {
|
41 |
+
"early_stopping": true,
|
42 |
+
"max_length": 300,
|
43 |
+
"num_beams": 4,
|
44 |
+
"prefix": "translate English to French: "
|
45 |
+
},
|
46 |
+
"translation_en_to_ro": {
|
47 |
+
"early_stopping": true,
|
48 |
+
"max_length": 300,
|
49 |
+
"num_beams": 4,
|
50 |
+
"prefix": "translate English to Romanian: "
|
51 |
+
}
|
52 |
+
},
|
53 |
+
"torch_dtype": "float16",
|
54 |
+
"transformers_version": "4.11.3",
|
55 |
+
"use_cache": true,
|
56 |
+
"vocab_size": 32128
|
57 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.0",
|
4 |
+
"transformers": "4.7.0",
|
5 |
+
"pytorch": "1.9.0+cu102"
|
6 |
+
}
|
7 |
+
}
|
convert.ipynb
ADDED
@@ -0,0 +1,981 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"id": "17bffc12",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"from transformers import AutoTokenizer\n",
|
11 |
+
"from sentence_transformers import util\n",
|
12 |
+
"import os\n",
|
13 |
+
"import numpy as np\n",
|
14 |
+
"import torch.nn.functional as F\n",
|
15 |
+
"from transformers import T5EncoderModel\n",
|
16 |
+
"import torch"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": 3,
|
22 |
+
"id": "160d8ce6",
|
23 |
+
"metadata": {},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"#Mean Pooling - Take attention mask into account for correct averaging\n",
|
27 |
+
"def mean_pooling(model_output, attention_mask):\n",
|
28 |
+
" token_embeddings = model_output[0] #First element of model_output contains all token embeddings\n",
|
29 |
+
" input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()\n",
|
30 |
+
" return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)\n"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": 16,
|
36 |
+
"id": "2f67f426",
|
37 |
+
"metadata": {},
|
38 |
+
"outputs": [
|
39 |
+
{
|
40 |
+
"name": "stderr",
|
41 |
+
"output_type": "stream",
|
42 |
+
"text": [
|
43 |
+
"WARNING:absl:Importing a function (__inference_<lambda>_9720) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.\n",
|
44 |
+
"WARNING:absl:Importing a function (__inference_<lambda>_3354) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.\n",
|
45 |
+
"WARNING:absl:Importing a function (__inference_<lambda>_6722) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.\n"
|
46 |
+
]
|
47 |
+
}
|
48 |
+
],
|
49 |
+
"source": [
|
50 |
+
"import tensorflow as tf\n",
|
51 |
+
"import tensorflow_hub as hub\n",
|
52 |
+
"import tensorflow_text as text \n",
|
53 |
+
"\n",
|
54 |
+
"model_size = \"base\"\n",
|
55 |
+
"hub_url = f\"https://tfhub.dev/google/sentence-t5/st5-{model_size}/1\"\n",
|
56 |
+
"encoder = hub.load(hub_url)\n",
|
57 |
+
"\n",
|
58 |
+
"v = encoder.signatures['serving_default'].variables"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": 17,
|
64 |
+
"id": "5f4c8d94",
|
65 |
+
"metadata": {
|
66 |
+
"scrolled": true
|
67 |
+
},
|
68 |
+
"outputs": [
|
69 |
+
{
|
70 |
+
"data": {
|
71 |
+
"text/plain": [
|
72 |
+
"{'encoder__encoder_norm__scale:0': TensorShape([768]),\n",
|
73 |
+
" 'encoder__layers_0__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
74 |
+
" 'encoder__layers_0__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
75 |
+
" 'encoder__layers_0__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
76 |
+
" 'encoder__layers_0__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
77 |
+
" 'encoder__layers_0__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
78 |
+
" 'encoder__layers_0__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
79 |
+
" 'encoder__layers_0__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
80 |
+
" 'encoder__layers_0__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
81 |
+
" 'encoder__layers_1__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
82 |
+
" 'encoder__layers_1__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
83 |
+
" 'encoder__layers_1__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
84 |
+
" 'encoder__layers_1__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
85 |
+
" 'encoder__layers_1__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
86 |
+
" 'encoder__layers_1__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
87 |
+
" 'encoder__layers_1__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
88 |
+
" 'encoder__layers_1__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
89 |
+
" 'encoder__layers_10__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
90 |
+
" 'encoder__layers_10__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
91 |
+
" 'encoder__layers_10__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
92 |
+
" 'encoder__layers_10__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
93 |
+
" 'encoder__layers_10__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
94 |
+
" 'encoder__layers_10__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
95 |
+
" 'encoder__layers_10__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
96 |
+
" 'encoder__layers_10__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
97 |
+
" 'encoder__layers_11__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
98 |
+
" 'encoder__layers_11__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
99 |
+
" 'encoder__layers_11__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
100 |
+
" 'encoder__layers_11__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
101 |
+
" 'encoder__layers_11__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
102 |
+
" 'encoder__layers_11__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
103 |
+
" 'encoder__layers_11__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
104 |
+
" 'encoder__layers_11__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
105 |
+
" 'encoder__layers_2__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
106 |
+
" 'encoder__layers_2__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
107 |
+
" 'encoder__layers_2__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
108 |
+
" 'encoder__layers_2__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
109 |
+
" 'encoder__layers_2__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
110 |
+
" 'encoder__layers_2__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
111 |
+
" 'encoder__layers_2__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
112 |
+
" 'encoder__layers_2__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
113 |
+
" 'encoder__layers_3__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
114 |
+
" 'encoder__layers_3__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
115 |
+
" 'encoder__layers_3__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
116 |
+
" 'encoder__layers_3__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
117 |
+
" 'encoder__layers_3__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
118 |
+
" 'encoder__layers_3__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
119 |
+
" 'encoder__layers_3__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
120 |
+
" 'encoder__layers_3__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
121 |
+
" 'encoder__layers_4__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
122 |
+
" 'encoder__layers_4__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
123 |
+
" 'encoder__layers_4__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
124 |
+
" 'encoder__layers_4__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
125 |
+
" 'encoder__layers_4__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
126 |
+
" 'encoder__layers_4__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
127 |
+
" 'encoder__layers_4__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
128 |
+
" 'encoder__layers_4__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
129 |
+
" 'encoder__layers_5__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
130 |
+
" 'encoder__layers_5__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
131 |
+
" 'encoder__layers_5__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
132 |
+
" 'encoder__layers_5__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
133 |
+
" 'encoder__layers_5__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
134 |
+
" 'encoder__layers_5__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
135 |
+
" 'encoder__layers_5__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
136 |
+
" 'encoder__layers_5__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
137 |
+
" 'encoder__layers_6__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
138 |
+
" 'encoder__layers_6__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
139 |
+
" 'encoder__layers_6__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
140 |
+
" 'encoder__layers_6__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
141 |
+
" 'encoder__layers_6__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
142 |
+
" 'encoder__layers_6__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
143 |
+
" 'encoder__layers_6__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
144 |
+
" 'encoder__layers_6__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
145 |
+
" 'encoder__layers_7__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
146 |
+
" 'encoder__layers_7__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
147 |
+
" 'encoder__layers_7__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
148 |
+
" 'encoder__layers_7__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
149 |
+
" 'encoder__layers_7__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
150 |
+
" 'encoder__layers_7__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
151 |
+
" 'encoder__layers_7__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
152 |
+
" 'encoder__layers_7__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
153 |
+
" 'encoder__layers_8__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
154 |
+
" 'encoder__layers_8__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
155 |
+
" 'encoder__layers_8__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
156 |
+
" 'encoder__layers_8__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
157 |
+
" 'encoder__layers_8__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
158 |
+
" 'encoder__layers_8__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
159 |
+
" 'encoder__layers_8__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
160 |
+
" 'encoder__layers_8__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
161 |
+
" 'encoder__layers_9__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
162 |
+
" 'encoder__layers_9__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
163 |
+
" 'encoder__layers_9__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
164 |
+
" 'encoder__layers_9__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
165 |
+
" 'encoder__layers_9__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
166 |
+
" 'encoder__layers_9__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
167 |
+
" 'encoder__layers_9__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
168 |
+
" 'encoder__layers_9__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
169 |
+
" 'encoder__relpos_bias__rel_embedding:0': TensorShape([12, 32]),\n",
|
170 |
+
" 'projection_layer__kernel:0': TensorShape([768, 768]),\n",
|
171 |
+
" 'token_embedder__embedding:0': TensorShape([32128, 768])}"
|
172 |
+
]
|
173 |
+
},
|
174 |
+
"execution_count": 17,
|
175 |
+
"metadata": {},
|
176 |
+
"output_type": "execute_result"
|
177 |
+
}
|
178 |
+
],
|
179 |
+
"source": [
|
180 |
+
"tf_name_weight = {var.name: var for var in v}\n",
|
181 |
+
"tf_name_shape = {var.name: var.shape for var in v}\n",
|
182 |
+
"tf_name_shape"
|
183 |
+
]
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"cell_type": "code",
|
187 |
+
"execution_count": 6,
|
188 |
+
"id": "1d3c9865",
|
189 |
+
"metadata": {},
|
190 |
+
"outputs": [],
|
191 |
+
"source": [
|
192 |
+
"def convert_name(name):\n",
|
193 |
+
" fct_map = {\n",
|
194 |
+
" \"attention\": \"SelfAttention\",\n",
|
195 |
+
" \"mlp\": \"DenseReluDense\",\n",
|
196 |
+
" \"pre_attention_layer_norm\": \"layer_norm\",\n",
|
197 |
+
" \"pre_mlp_layer_norm\": \"layer_norm\",\n",
|
198 |
+
" }\n",
|
199 |
+
" name_map = {\n",
|
200 |
+
" 'key': 'k',\n",
|
201 |
+
" 'out': 'o',\n",
|
202 |
+
" 'query': 'q',\n",
|
203 |
+
" 'value': 'v'\n",
|
204 |
+
" }\n",
|
205 |
+
" \n",
|
206 |
+
" fixed_names = {\n",
|
207 |
+
" \"token_embedder__embedding:0\": \"shared.weight\",\n",
|
208 |
+
" \"encoder__encoder_norm__scale:0\": \"encoder.final_layer_norm.weight\",\n",
|
209 |
+
" \"encoder__relpos_bias__rel_embedding:0\": \"encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight\"\n",
|
210 |
+
" }\n",
|
211 |
+
" \n",
|
212 |
+
" if name in fixed_names:\n",
|
213 |
+
" return fixed_names[name]\n",
|
214 |
+
" \n",
|
215 |
+
" out = \"\"\n",
|
216 |
+
" splits = name.split(\"__\")\n",
|
217 |
+
" layer = splits[1].split(\"_\")[1]\n",
|
218 |
+
" fct = fct_map.get(splits[2], splits[2])\n",
|
219 |
+
" if 'layer_norm' in name:\n",
|
220 |
+
" sublayer = \"1\" if \"pre_mlp_layer_norm\" in name else \"0\" #Not sure on the right setting here\n",
|
221 |
+
" #sublayer = \"0\" if \"pre_mlp_layer_norm\" in name else \"1\" #Not sure on the right setting here\n",
|
222 |
+
" out = f\"encoder.block.{layer}.layer.{sublayer}.{fct}.weight\"\n",
|
223 |
+
" elif name.startswith(\"encoder__layers_\"):\n",
|
224 |
+
" sublayer = \"0\" if fct == \"SelfAttention\" else \"1\"\n",
|
225 |
+
" name = name_map.get(splits[3], splits[3])\n",
|
226 |
+
" out = f\"encoder.block.{layer}.layer.{sublayer}.{fct}.{name}.weight\"\n",
|
227 |
+
" \n",
|
228 |
+
" return out"
|
229 |
+
]
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"cell_type": "code",
|
233 |
+
"execution_count": 7,
|
234 |
+
"id": "1ca9590e",
|
235 |
+
"metadata": {},
|
236 |
+
"outputs": [],
|
237 |
+
"source": [
|
238 |
+
"def equal_shapes(shape1, shape2):\n",
|
239 |
+
" if len(shape1) != len(shape2):\n",
|
240 |
+
" return False\n",
|
241 |
+
" \n",
|
242 |
+
" for idx in range(len(shape1)):\n",
|
243 |
+
" if shape1[idx] != shape2[idx]:\n",
|
244 |
+
" return False\n",
|
245 |
+
" \n",
|
246 |
+
" return True"
|
247 |
+
]
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"cell_type": "code",
|
251 |
+
"execution_count": 8,
|
252 |
+
"id": "6d223b07",
|
253 |
+
"metadata": {
|
254 |
+
"scrolled": true
|
255 |
+
},
|
256 |
+
"outputs": [
|
257 |
+
{
|
258 |
+
"name": "stderr",
|
259 |
+
"output_type": "stream",
|
260 |
+
"text": [
|
261 |
+
"Some weights of T5EncoderModel were not initialized from the model checkpoint at t5-11b and are newly initialized: ['encoder.embed_tokens.weight']\n",
|
262 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
263 |
+
]
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"data": {
|
267 |
+
"text/plain": [
|
268 |
+
"{'shared.weight': torch.Size([32128, 1024]),\n",
|
269 |
+
" 'encoder.embed_tokens.weight': torch.Size([32128, 1024]),\n",
|
270 |
+
" 'encoder.block.0.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
271 |
+
" 'encoder.block.0.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
272 |
+
" 'encoder.block.0.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
273 |
+
" 'encoder.block.0.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
274 |
+
" 'encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight': torch.Size([32, 128]),\n",
|
275 |
+
" 'encoder.block.0.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
276 |
+
" 'encoder.block.0.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
277 |
+
" 'encoder.block.0.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
278 |
+
" 'encoder.block.0.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
279 |
+
" 'encoder.block.1.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
280 |
+
" 'encoder.block.1.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
281 |
+
" 'encoder.block.1.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
282 |
+
" 'encoder.block.1.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
283 |
+
" 'encoder.block.1.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
284 |
+
" 'encoder.block.1.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
285 |
+
" 'encoder.block.1.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
286 |
+
" 'encoder.block.1.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
287 |
+
" 'encoder.block.2.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
288 |
+
" 'encoder.block.2.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
289 |
+
" 'encoder.block.2.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
290 |
+
" 'encoder.block.2.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
291 |
+
" 'encoder.block.2.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
292 |
+
" 'encoder.block.2.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
293 |
+
" 'encoder.block.2.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
294 |
+
" 'encoder.block.2.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
295 |
+
" 'encoder.block.3.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
296 |
+
" 'encoder.block.3.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
297 |
+
" 'encoder.block.3.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
298 |
+
" 'encoder.block.3.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
299 |
+
" 'encoder.block.3.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
300 |
+
" 'encoder.block.3.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
301 |
+
" 'encoder.block.3.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
302 |
+
" 'encoder.block.3.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
303 |
+
" 'encoder.block.4.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
304 |
+
" 'encoder.block.4.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
305 |
+
" 'encoder.block.4.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
306 |
+
" 'encoder.block.4.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
307 |
+
" 'encoder.block.4.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
308 |
+
" 'encoder.block.4.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
309 |
+
" 'encoder.block.4.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
310 |
+
" 'encoder.block.4.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
311 |
+
" 'encoder.block.5.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
312 |
+
" 'encoder.block.5.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
313 |
+
" 'encoder.block.5.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
314 |
+
" 'encoder.block.5.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
315 |
+
" 'encoder.block.5.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
316 |
+
" 'encoder.block.5.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
317 |
+
" 'encoder.block.5.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
318 |
+
" 'encoder.block.5.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
319 |
+
" 'encoder.block.6.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
320 |
+
" 'encoder.block.6.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
321 |
+
" 'encoder.block.6.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
322 |
+
" 'encoder.block.6.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
323 |
+
" 'encoder.block.6.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
324 |
+
" 'encoder.block.6.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
325 |
+
" 'encoder.block.6.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
326 |
+
" 'encoder.block.6.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
327 |
+
" 'encoder.block.7.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
328 |
+
" 'encoder.block.7.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
329 |
+
" 'encoder.block.7.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
330 |
+
" 'encoder.block.7.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
331 |
+
" 'encoder.block.7.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
332 |
+
" 'encoder.block.7.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
333 |
+
" 'encoder.block.7.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
334 |
+
" 'encoder.block.7.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
335 |
+
" 'encoder.block.8.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
336 |
+
" 'encoder.block.8.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
337 |
+
" 'encoder.block.8.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
338 |
+
" 'encoder.block.8.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
339 |
+
" 'encoder.block.8.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
340 |
+
" 'encoder.block.8.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
341 |
+
" 'encoder.block.8.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
342 |
+
" 'encoder.block.8.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
343 |
+
" 'encoder.block.9.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
344 |
+
" 'encoder.block.9.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
345 |
+
" 'encoder.block.9.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
346 |
+
" 'encoder.block.9.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
347 |
+
" 'encoder.block.9.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
348 |
+
" 'encoder.block.9.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
349 |
+
" 'encoder.block.9.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
350 |
+
" 'encoder.block.9.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
351 |
+
" 'encoder.block.10.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
352 |
+
" 'encoder.block.10.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
353 |
+
" 'encoder.block.10.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
354 |
+
" 'encoder.block.10.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
355 |
+
" 'encoder.block.10.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
356 |
+
" 'encoder.block.10.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
357 |
+
" 'encoder.block.10.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
358 |
+
" 'encoder.block.10.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
359 |
+
" 'encoder.block.11.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
360 |
+
" 'encoder.block.11.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
361 |
+
" 'encoder.block.11.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
362 |
+
" 'encoder.block.11.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
363 |
+
" 'encoder.block.11.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
364 |
+
" 'encoder.block.11.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
365 |
+
" 'encoder.block.11.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
366 |
+
" 'encoder.block.11.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
367 |
+
" 'encoder.block.12.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
368 |
+
" 'encoder.block.12.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
369 |
+
" 'encoder.block.12.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
370 |
+
" 'encoder.block.12.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
371 |
+
" 'encoder.block.12.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
372 |
+
" 'encoder.block.12.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
373 |
+
" 'encoder.block.12.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
374 |
+
" 'encoder.block.12.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
375 |
+
" 'encoder.block.13.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
376 |
+
" 'encoder.block.13.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
377 |
+
" 'encoder.block.13.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
378 |
+
" 'encoder.block.13.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
379 |
+
" 'encoder.block.13.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
380 |
+
" 'encoder.block.13.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
381 |
+
" 'encoder.block.13.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
382 |
+
" 'encoder.block.13.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
383 |
+
" 'encoder.block.14.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
384 |
+
" 'encoder.block.14.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
385 |
+
" 'encoder.block.14.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
386 |
+
" 'encoder.block.14.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
387 |
+
" 'encoder.block.14.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
388 |
+
" 'encoder.block.14.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
389 |
+
" 'encoder.block.14.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
390 |
+
" 'encoder.block.14.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
391 |
+
" 'encoder.block.15.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
392 |
+
" 'encoder.block.15.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
393 |
+
" 'encoder.block.15.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
394 |
+
" 'encoder.block.15.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
395 |
+
" 'encoder.block.15.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
396 |
+
" 'encoder.block.15.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
397 |
+
" 'encoder.block.15.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
398 |
+
" 'encoder.block.15.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
399 |
+
" 'encoder.block.16.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
400 |
+
" 'encoder.block.16.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
401 |
+
" 'encoder.block.16.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
402 |
+
" 'encoder.block.16.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
403 |
+
" 'encoder.block.16.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
404 |
+
" 'encoder.block.16.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
405 |
+
" 'encoder.block.16.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
406 |
+
" 'encoder.block.16.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
407 |
+
" 'encoder.block.17.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
408 |
+
" 'encoder.block.17.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
409 |
+
" 'encoder.block.17.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
410 |
+
" 'encoder.block.17.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
411 |
+
" 'encoder.block.17.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
412 |
+
" 'encoder.block.17.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
413 |
+
" 'encoder.block.17.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
414 |
+
" 'encoder.block.17.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
415 |
+
" 'encoder.block.18.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
416 |
+
" 'encoder.block.18.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
417 |
+
" 'encoder.block.18.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
418 |
+
" 'encoder.block.18.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
419 |
+
" 'encoder.block.18.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
420 |
+
" 'encoder.block.18.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
421 |
+
" 'encoder.block.18.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
422 |
+
" 'encoder.block.18.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
423 |
+
" 'encoder.block.19.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
424 |
+
" 'encoder.block.19.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
425 |
+
" 'encoder.block.19.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
426 |
+
" 'encoder.block.19.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
427 |
+
" 'encoder.block.19.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
428 |
+
" 'encoder.block.19.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
429 |
+
" 'encoder.block.19.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
430 |
+
" 'encoder.block.19.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
431 |
+
" 'encoder.block.20.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
432 |
+
" 'encoder.block.20.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
433 |
+
" 'encoder.block.20.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
434 |
+
" 'encoder.block.20.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
435 |
+
" 'encoder.block.20.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
436 |
+
" 'encoder.block.20.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
437 |
+
" 'encoder.block.20.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
438 |
+
" 'encoder.block.20.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
439 |
+
" 'encoder.block.21.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
440 |
+
" 'encoder.block.21.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
441 |
+
" 'encoder.block.21.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
442 |
+
" 'encoder.block.21.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
443 |
+
" 'encoder.block.21.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
444 |
+
" 'encoder.block.21.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
445 |
+
" 'encoder.block.21.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
446 |
+
" 'encoder.block.21.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
447 |
+
" 'encoder.block.22.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
448 |
+
" 'encoder.block.22.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
449 |
+
" 'encoder.block.22.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
450 |
+
" 'encoder.block.22.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
451 |
+
" 'encoder.block.22.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
452 |
+
" 'encoder.block.22.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
453 |
+
" 'encoder.block.22.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
454 |
+
" 'encoder.block.22.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
455 |
+
" 'encoder.block.23.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
456 |
+
" 'encoder.block.23.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
457 |
+
" 'encoder.block.23.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
458 |
+
" 'encoder.block.23.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
459 |
+
" 'encoder.block.23.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
460 |
+
" 'encoder.block.23.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
461 |
+
" 'encoder.block.23.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
462 |
+
" 'encoder.block.23.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
463 |
+
" 'encoder.final_layer_norm.weight': torch.Size([1024])}"
|
464 |
+
]
|
465 |
+
},
|
466 |
+
"execution_count": 8,
|
467 |
+
"metadata": {},
|
468 |
+
"output_type": "execute_result"
|
469 |
+
}
|
470 |
+
],
|
471 |
+
"source": [
|
472 |
+
"tokenizer = AutoTokenizer.from_pretrained(f\"t5-{model_size}\")\n",
|
473 |
+
"T5EncoderModel._keys_to_ignore_on_load_unexpected = [\"decoder.*\"]\n",
|
474 |
+
"t5 = T5EncoderModel.from_pretrained(f\"t5-{model_size}\") \n",
|
475 |
+
"pt_name_shape = {name: weight.shape for name, weight in t5.state_dict().items()}\n",
|
476 |
+
"pt_name_shape"
|
477 |
+
]
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"cell_type": "code",
|
481 |
+
"execution_count": 9,
|
482 |
+
"id": "ced52a5f",
|
483 |
+
"metadata": {},
|
484 |
+
"outputs": [
|
485 |
+
{
|
486 |
+
"name": "stdout",
|
487 |
+
"output_type": "stream",
|
488 |
+
"text": [
|
489 |
+
"Remaining weights: {'encoder.embed_tokens.weight'}\n"
|
490 |
+
]
|
491 |
+
}
|
492 |
+
],
|
493 |
+
"source": [
|
494 |
+
"def need_transpose(name, transpose_names=['DenseReluDense', 'relative_attention_bias']):\n",
|
495 |
+
" #HF function: https://github.com/huggingface/transformers/blob/c962c2adbff678ae6d2e98378bed5b8d1a9831d9/src/transformers/models/t5/modeling_t5.py#L161\n",
|
496 |
+
" return name != \"shared.weight\"\n",
|
497 |
+
"\n",
|
498 |
+
"\n",
|
499 |
+
"#Additional dense layer on top\n",
|
500 |
+
"names_to_ignore = {\"projection_layer__kernel:0\"}\n",
|
501 |
+
"\n",
|
502 |
+
"#Check we used all names\n",
|
503 |
+
"pt_all_names = set(t5.state_dict().keys())\n",
|
504 |
+
"\n",
|
505 |
+
"for var in v:\n",
|
506 |
+
" name = var.name\n",
|
507 |
+
" if name in names_to_ignore:\n",
|
508 |
+
" continue\n",
|
509 |
+
" \n",
|
510 |
+
" pt_name = convert_name(name)\n",
|
511 |
+
" if pt_name not in pt_all_names:\n",
|
512 |
+
" print(\"Name not found:\", name, \"=>\", pt_name)\n",
|
513 |
+
" else:\n",
|
514 |
+
" pt_all_names.remove(pt_name)\n",
|
515 |
+
" tf_shape = tf_name_shape[name].as_list()\n",
|
516 |
+
" pt_shape = list(pt_name_shape[pt_name])\n",
|
517 |
+
" \n",
|
518 |
+
" if need_transpose(pt_name):\n",
|
519 |
+
" pt_shape = list(reversed(pt_shape))\n",
|
520 |
+
" \n",
|
521 |
+
" if not equal_shapes(tf_shape, pt_shape):\n",
|
522 |
+
" print(\"Different shape:\", name, tf_shape, pt_name, pt_shape )\n",
|
523 |
+
" \n",
|
524 |
+
"print(\"Remaining weights:\", pt_all_names)\n",
|
525 |
+
"#All layers match"
|
526 |
+
]
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"cell_type": "code",
|
530 |
+
"execution_count": 10,
|
531 |
+
"id": "1190984f",
|
532 |
+
"metadata": {},
|
533 |
+
"outputs": [
|
534 |
+
{
|
535 |
+
"name": "stdout",
|
536 |
+
"output_type": "stream",
|
537 |
+
"text": [
|
538 |
+
"encoder__encoder_norm__scale:0 ((1024,)) =transpose=> encoder.final_layer_norm.weight torch.Size([1024])\n",
|
539 |
+
"encoder__layers_0__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.0.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
540 |
+
"encoder__layers_0__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.0.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
541 |
+
"encoder__layers_0__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.0.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
542 |
+
"encoder__layers_0__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.0.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
543 |
+
"encoder__layers_0__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.0.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
544 |
+
"encoder__layers_0__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.0.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
545 |
+
"encoder__layers_0__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.0.layer.0.layer_norm.weight torch.Size([1024])\n",
|
546 |
+
"encoder__layers_0__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.0.layer.1.layer_norm.weight torch.Size([1024])\n",
|
547 |
+
"encoder__layers_1__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.1.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
548 |
+
"encoder__layers_1__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.1.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
549 |
+
"encoder__layers_1__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.1.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
550 |
+
"encoder__layers_1__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.1.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
551 |
+
"encoder__layers_1__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.1.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
552 |
+
"encoder__layers_1__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.1.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
553 |
+
"encoder__layers_1__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.1.layer.0.layer_norm.weight torch.Size([1024])\n",
|
554 |
+
"encoder__layers_1__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.1.layer.1.layer_norm.weight torch.Size([1024])\n",
|
555 |
+
"encoder__layers_10__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.10.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
556 |
+
"encoder__layers_10__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.10.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
557 |
+
"encoder__layers_10__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.10.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
558 |
+
"encoder__layers_10__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.10.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
559 |
+
"encoder__layers_10__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.10.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
560 |
+
"encoder__layers_10__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.10.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
561 |
+
"encoder__layers_10__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.10.layer.0.layer_norm.weight torch.Size([1024])\n",
|
562 |
+
"encoder__layers_10__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.10.layer.1.layer_norm.weight torch.Size([1024])\n",
|
563 |
+
"encoder__layers_11__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.11.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
564 |
+
"encoder__layers_11__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.11.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
565 |
+
"encoder__layers_11__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.11.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
566 |
+
"encoder__layers_11__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.11.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
567 |
+
"encoder__layers_11__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.11.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
568 |
+
"encoder__layers_11__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.11.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
569 |
+
"encoder__layers_11__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.11.layer.0.layer_norm.weight torch.Size([1024])\n",
|
570 |
+
"encoder__layers_11__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.11.layer.1.layer_norm.weight torch.Size([1024])\n",
|
571 |
+
"encoder__layers_12__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.12.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
572 |
+
"encoder__layers_12__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.12.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
573 |
+
"encoder__layers_12__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.12.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
574 |
+
"encoder__layers_12__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.12.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
575 |
+
"encoder__layers_12__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.12.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
576 |
+
"encoder__layers_12__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.12.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
577 |
+
"encoder__layers_12__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.12.layer.0.layer_norm.weight torch.Size([1024])\n",
|
578 |
+
"encoder__layers_12__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.12.layer.1.layer_norm.weight torch.Size([1024])\n",
|
579 |
+
"encoder__layers_13__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.13.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
580 |
+
"encoder__layers_13__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.13.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
581 |
+
"encoder__layers_13__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.13.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
582 |
+
"encoder__layers_13__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.13.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
583 |
+
"encoder__layers_13__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.13.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
584 |
+
"encoder__layers_13__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.13.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
585 |
+
"encoder__layers_13__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.13.layer.0.layer_norm.weight torch.Size([1024])\n",
|
586 |
+
"encoder__layers_13__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.13.layer.1.layer_norm.weight torch.Size([1024])\n",
|
587 |
+
"encoder__layers_14__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.14.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
588 |
+
"encoder__layers_14__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.14.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
589 |
+
"encoder__layers_14__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.14.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
590 |
+
"encoder__layers_14__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.14.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
591 |
+
"encoder__layers_14__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.14.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
592 |
+
"encoder__layers_14__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.14.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
593 |
+
"encoder__layers_14__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.14.layer.0.layer_norm.weight torch.Size([1024])\n",
|
594 |
+
"encoder__layers_14__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.14.layer.1.layer_norm.weight torch.Size([1024])\n",
|
595 |
+
"encoder__layers_15__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.15.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n"
|
596 |
+
]
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"name": "stdout",
|
600 |
+
"output_type": "stream",
|
601 |
+
"text": [
|
602 |
+
"encoder__layers_15__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.15.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
603 |
+
"encoder__layers_15__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.15.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
604 |
+
"encoder__layers_15__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.15.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
605 |
+
"encoder__layers_15__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.15.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
606 |
+
"encoder__layers_15__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.15.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
607 |
+
"encoder__layers_15__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.15.layer.0.layer_norm.weight torch.Size([1024])\n",
|
608 |
+
"encoder__layers_15__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.15.layer.1.layer_norm.weight torch.Size([1024])\n",
|
609 |
+
"encoder__layers_16__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.16.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
610 |
+
"encoder__layers_16__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.16.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
611 |
+
"encoder__layers_16__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.16.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
612 |
+
"encoder__layers_16__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.16.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
613 |
+
"encoder__layers_16__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.16.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
614 |
+
"encoder__layers_16__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.16.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
615 |
+
"encoder__layers_16__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.16.layer.0.layer_norm.weight torch.Size([1024])\n",
|
616 |
+
"encoder__layers_16__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.16.layer.1.layer_norm.weight torch.Size([1024])\n",
|
617 |
+
"encoder__layers_17__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.17.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
618 |
+
"encoder__layers_17__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.17.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
619 |
+
"encoder__layers_17__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.17.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
620 |
+
"encoder__layers_17__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.17.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
621 |
+
"encoder__layers_17__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.17.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
622 |
+
"encoder__layers_17__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.17.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
623 |
+
"encoder__layers_17__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.17.layer.0.layer_norm.weight torch.Size([1024])\n",
|
624 |
+
"encoder__layers_17__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.17.layer.1.layer_norm.weight torch.Size([1024])\n",
|
625 |
+
"encoder__layers_18__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.18.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
626 |
+
"encoder__layers_18__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.18.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
627 |
+
"encoder__layers_18__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.18.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
628 |
+
"encoder__layers_18__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.18.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
629 |
+
"encoder__layers_18__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.18.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
630 |
+
"encoder__layers_18__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.18.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
631 |
+
"encoder__layers_18__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.18.layer.0.layer_norm.weight torch.Size([1024])\n",
|
632 |
+
"encoder__layers_18__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.18.layer.1.layer_norm.weight torch.Size([1024])\n",
|
633 |
+
"encoder__layers_19__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.19.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
634 |
+
"encoder__layers_19__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.19.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
635 |
+
"encoder__layers_19__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.19.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
636 |
+
"encoder__layers_19__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.19.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
637 |
+
"encoder__layers_19__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.19.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
638 |
+
"encoder__layers_19__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.19.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
639 |
+
"encoder__layers_19__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.19.layer.0.layer_norm.weight torch.Size([1024])\n",
|
640 |
+
"encoder__layers_19__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.19.layer.1.layer_norm.weight torch.Size([1024])\n",
|
641 |
+
"encoder__layers_2__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.2.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
642 |
+
"encoder__layers_2__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.2.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
643 |
+
"encoder__layers_2__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.2.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
644 |
+
"encoder__layers_2__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.2.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
645 |
+
"encoder__layers_2__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.2.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
646 |
+
"encoder__layers_2__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.2.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
647 |
+
"encoder__layers_2__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.2.layer.0.layer_norm.weight torch.Size([1024])\n",
|
648 |
+
"encoder__layers_2__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.2.layer.1.layer_norm.weight torch.Size([1024])\n",
|
649 |
+
"encoder__layers_20__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.20.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
650 |
+
"encoder__layers_20__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.20.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
651 |
+
"encoder__layers_20__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.20.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
652 |
+
"encoder__layers_20__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.20.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
653 |
+
"encoder__layers_20__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.20.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
654 |
+
"encoder__layers_20__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.20.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
655 |
+
"encoder__layers_20__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.20.layer.0.layer_norm.weight torch.Size([1024])\n",
|
656 |
+
"encoder__layers_20__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.20.layer.1.layer_norm.weight torch.Size([1024])\n",
|
657 |
+
"encoder__layers_21__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.21.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
658 |
+
"encoder__layers_21__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.21.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
659 |
+
"encoder__layers_21__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.21.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n"
|
660 |
+
]
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"name": "stdout",
|
664 |
+
"output_type": "stream",
|
665 |
+
"text": [
|
666 |
+
"encoder__layers_21__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.21.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
667 |
+
"encoder__layers_21__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.21.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
668 |
+
"encoder__layers_21__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.21.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
669 |
+
"encoder__layers_21__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.21.layer.0.layer_norm.weight torch.Size([1024])\n",
|
670 |
+
"encoder__layers_21__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.21.layer.1.layer_norm.weight torch.Size([1024])\n",
|
671 |
+
"encoder__layers_22__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.22.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
672 |
+
"encoder__layers_22__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.22.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
673 |
+
"encoder__layers_22__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.22.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
674 |
+
"encoder__layers_22__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.22.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
675 |
+
"encoder__layers_22__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.22.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
676 |
+
"encoder__layers_22__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.22.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
677 |
+
"encoder__layers_22__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.22.layer.0.layer_norm.weight torch.Size([1024])\n",
|
678 |
+
"encoder__layers_22__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.22.layer.1.layer_norm.weight torch.Size([1024])\n",
|
679 |
+
"encoder__layers_23__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.23.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
680 |
+
"encoder__layers_23__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.23.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
681 |
+
"encoder__layers_23__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.23.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
682 |
+
"encoder__layers_23__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.23.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
683 |
+
"encoder__layers_23__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.23.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
684 |
+
"encoder__layers_23__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.23.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
685 |
+
"encoder__layers_23__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.23.layer.0.layer_norm.weight torch.Size([1024])\n",
|
686 |
+
"encoder__layers_23__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.23.layer.1.layer_norm.weight torch.Size([1024])\n",
|
687 |
+
"encoder__layers_3__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.3.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
688 |
+
"encoder__layers_3__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.3.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
689 |
+
"encoder__layers_3__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.3.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
690 |
+
"encoder__layers_3__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.3.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
691 |
+
"encoder__layers_3__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.3.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
692 |
+
"encoder__layers_3__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.3.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
693 |
+
"encoder__layers_3__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.3.layer.0.layer_norm.weight torch.Size([1024])\n",
|
694 |
+
"encoder__layers_3__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.3.layer.1.layer_norm.weight torch.Size([1024])\n",
|
695 |
+
"encoder__layers_4__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.4.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
696 |
+
"encoder__layers_4__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.4.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
697 |
+
"encoder__layers_4__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.4.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
698 |
+
"encoder__layers_4__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.4.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
699 |
+
"encoder__layers_4__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.4.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
700 |
+
"encoder__layers_4__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.4.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
701 |
+
"encoder__layers_4__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.4.layer.0.layer_norm.weight torch.Size([1024])\n",
|
702 |
+
"encoder__layers_4__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.4.layer.1.layer_norm.weight torch.Size([1024])\n",
|
703 |
+
"encoder__layers_5__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.5.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
704 |
+
"encoder__layers_5__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.5.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
705 |
+
"encoder__layers_5__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.5.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
706 |
+
"encoder__layers_5__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.5.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
707 |
+
"encoder__layers_5__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.5.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
708 |
+
"encoder__layers_5__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.5.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
709 |
+
"encoder__layers_5__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.5.layer.0.layer_norm.weight torch.Size([1024])\n",
|
710 |
+
"encoder__layers_5__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.5.layer.1.layer_norm.weight torch.Size([1024])\n",
|
711 |
+
"encoder__layers_6__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.6.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
712 |
+
"encoder__layers_6__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.6.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
713 |
+
"encoder__layers_6__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.6.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
714 |
+
"encoder__layers_6__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.6.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
715 |
+
"encoder__layers_6__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.6.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
716 |
+
"encoder__layers_6__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.6.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
717 |
+
"encoder__layers_6__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.6.layer.0.layer_norm.weight torch.Size([1024])\n",
|
718 |
+
"encoder__layers_6__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.6.layer.1.layer_norm.weight torch.Size([1024])\n",
|
719 |
+
"encoder__layers_7__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.7.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
720 |
+
"encoder__layers_7__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.7.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
721 |
+
"encoder__layers_7__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.7.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
722 |
+
"encoder__layers_7__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.7.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
723 |
+
"encoder__layers_7__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.7.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n"
|
724 |
+
]
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"name": "stdout",
|
728 |
+
"output_type": "stream",
|
729 |
+
"text": [
|
730 |
+
"encoder__layers_7__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.7.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
731 |
+
"encoder__layers_7__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.7.layer.0.layer_norm.weight torch.Size([1024])\n",
|
732 |
+
"encoder__layers_7__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.7.layer.1.layer_norm.weight torch.Size([1024])\n",
|
733 |
+
"encoder__layers_8__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.8.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
734 |
+
"encoder__layers_8__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.8.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
735 |
+
"encoder__layers_8__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.8.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
736 |
+
"encoder__layers_8__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.8.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
737 |
+
"encoder__layers_8__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.8.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
738 |
+
"encoder__layers_8__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.8.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
739 |
+
"encoder__layers_8__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.8.layer.0.layer_norm.weight torch.Size([1024])\n",
|
740 |
+
"encoder__layers_8__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.8.layer.1.layer_norm.weight torch.Size([1024])\n",
|
741 |
+
"encoder__layers_9__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.9.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
742 |
+
"encoder__layers_9__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.9.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
743 |
+
"encoder__layers_9__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.9.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
744 |
+
"encoder__layers_9__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.9.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
745 |
+
"encoder__layers_9__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.9.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
746 |
+
"encoder__layers_9__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.9.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
747 |
+
"encoder__layers_9__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.9.layer.0.layer_norm.weight torch.Size([1024])\n",
|
748 |
+
"encoder__layers_9__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.9.layer.1.layer_norm.weight torch.Size([1024])\n",
|
749 |
+
"encoder__relpos_bias__rel_embedding:0 ((128, 32)) =transpose=> encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight torch.Size([32, 128])\n",
|
750 |
+
"token_embedder__embedding:0 ((32128, 1024)) => shared.weight torch.Size([32128, 1024])\n",
|
751 |
+
"Linear(in_features=1024, out_features=768, bias=False)\n",
|
752 |
+
"Remaining weights: set()\n"
|
753 |
+
]
|
754 |
+
}
|
755 |
+
],
|
756 |
+
"source": [
|
757 |
+
"t5_state = t5.state_dict()\n",
|
758 |
+
"state_all_names = set(t5_state.keys())\n",
|
759 |
+
"\n",
|
760 |
+
"\n",
|
761 |
+
"for var in v:\n",
|
762 |
+
" tf_name = var.name\n",
|
763 |
+
" if tf_name in names_to_ignore:\n",
|
764 |
+
" continue\n",
|
765 |
+
" \n",
|
766 |
+
" pt_name = convert_name(tf_name)\n",
|
767 |
+
" weights = np.float32(var.numpy())\n",
|
768 |
+
" \n",
|
769 |
+
" state_all_names.remove(pt_name)\n",
|
770 |
+
" \n",
|
771 |
+
" tranpose_status = \"=>\"\n",
|
772 |
+
" if need_transpose(pt_name, ['DenseReluDense', 'relative_attention_bias',]):\n",
|
773 |
+
" tranpose_status = \"=transpose=>\"\n",
|
774 |
+
" weights = weights.transpose()\n",
|
775 |
+
" \n",
|
776 |
+
" print(tf_name, f\"({var.shape})\", tranpose_status, pt_name, t5_state[pt_name].shape)\n",
|
777 |
+
" \n",
|
778 |
+
" original_shape = t5_state[pt_name].shape\n",
|
779 |
+
" t5_state[pt_name] = torch.nn.Parameter(torch.tensor(weights))\n",
|
780 |
+
" new_shape = t5_state[pt_name].shape\n",
|
781 |
+
" \n",
|
782 |
+
" if not equal_shapes(original_shape, new_shape):\n",
|
783 |
+
" print(\"Different shape:\", tf_name, original_shape, pt_name, new_shape)\n",
|
784 |
+
" break\n",
|
785 |
+
"\n",
|
786 |
+
"#Encoder Word embeddings\n",
|
787 |
+
"t5_state['encoder.embed_tokens.weight'] = t5_state['shared.weight']\n",
|
788 |
+
"state_all_names.remove('encoder.embed_tokens.weight')\n",
|
789 |
+
" \n",
|
790 |
+
"#Load back the weights\n",
|
791 |
+
"t5.load_state_dict(t5_state) \n",
|
792 |
+
"\n",
|
793 |
+
"tf_linear_weight = tf_name_weight[\"projection_layer__kernel:0\"]\n",
|
794 |
+
"linear = torch.nn.Linear(tf_linear_weight.shape[0], tf_linear_weight.shape[1], bias=False)\n",
|
795 |
+
"original_shape = linear.weight.shape\n",
|
796 |
+
"linear.weight = torch.nn.Parameter(torch.tensor(np.float32(tf_linear_weight.numpy()).transpose()))\n",
|
797 |
+
"new_shape = linear.weight.shape\n",
|
798 |
+
"if not equal_shapes(original_shape, new_shape):\n",
|
799 |
+
" print(\"Different shape at linear layer\")\n",
|
800 |
+
" \n",
|
801 |
+
"print(linear)\n",
|
802 |
+
"print(\"Remaining weights:\", state_all_names)\n",
|
803 |
+
"assert len(state_all_names) == 0\n"
|
804 |
+
]
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"cell_type": "code",
|
808 |
+
"execution_count": 11,
|
809 |
+
"id": "d59d5a2c",
|
810 |
+
"metadata": {},
|
811 |
+
"outputs": [
|
812 |
+
{
|
813 |
+
"name": "stdout",
|
814 |
+
"output_type": "stream",
|
815 |
+
"text": [
|
816 |
+
"torch.Size([8, 768])\n"
|
817 |
+
]
|
818 |
+
},
|
819 |
+
{
|
820 |
+
"data": {
|
821 |
+
"text/plain": [
|
822 |
+
"tensor([[1.0000, 0.9279, 0.6404, 0.5968, 0.5420, 0.5442, 0.6099, 0.6318],\n",
|
823 |
+
" [0.9279, 1.0000, 0.6629, 0.6098, 0.5562, 0.5687, 0.6382, 0.6262],\n",
|
824 |
+
" [0.6404, 0.6629, 1.0000, 0.8351, 0.7101, 0.6953, 0.6265, 0.6390],\n",
|
825 |
+
" [0.5968, 0.6098, 0.8351, 1.0000, 0.6877, 0.6716, 0.5902, 0.6102],\n",
|
826 |
+
" [0.5420, 0.5562, 0.7101, 0.6877, 1.0000, 0.8924, 0.5701, 0.5661],\n",
|
827 |
+
" [0.5442, 0.5687, 0.6953, 0.6716, 0.8924, 1.0000, 0.5665, 0.5457],\n",
|
828 |
+
" [0.6099, 0.6382, 0.6265, 0.5902, 0.5701, 0.5665, 1.0000, 0.7950],\n",
|
829 |
+
" [0.6318, 0.6262, 0.6390, 0.6102, 0.5661, 0.5457, 0.7950, 1.0000]])"
|
830 |
+
]
|
831 |
+
},
|
832 |
+
"execution_count": 11,
|
833 |
+
"metadata": {},
|
834 |
+
"output_type": "execute_result"
|
835 |
+
}
|
836 |
+
],
|
837 |
+
"source": [
|
838 |
+
"english_sentences = [\"Berlin is the capital of Germany\", \"Berlin is a large city in Germany\",\n",
|
839 |
+
" \"Tensorflow can be used for deep learning\", \"Pytorch, developed by Facebook AI, is a deep learning framework\",\n",
|
840 |
+
" \"Is Scipy or numpy better?\", \"Which is faster: scipy or pandas?\",\n",
|
841 |
+
" \"Cats can live for quite a long time\", \"Cats are humans best friend\"]\n",
|
842 |
+
"\n",
|
843 |
+
"encoded_input = tokenizer(english_sentences, return_tensors=\"pt\", padding=True)\n",
|
844 |
+
"\n",
|
845 |
+
"with torch.no_grad():\n",
|
846 |
+
" model_output = t5(**encoded_input)\n",
|
847 |
+
" \n",
|
848 |
+
" # Perform pooling\n",
|
849 |
+
" hf_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])\n",
|
850 |
+
"\n",
|
851 |
+
" # Apply linear layer\n",
|
852 |
+
" hf_embeddings = linear(hf_embeddings)\n",
|
853 |
+
" \n",
|
854 |
+
" print(hf_embeddings.shape)\n",
|
855 |
+
"\n",
|
856 |
+
" # Normalize embeddings\n",
|
857 |
+
" hf_embeddings = F.normalize(hf_embeddings, p=2, dim=1)\n",
|
858 |
+
"\n",
|
859 |
+
"# Cos\n",
|
860 |
+
"hf_scores = util.dot_score(hf_embeddings, hf_embeddings).numpy()\n",
|
861 |
+
"hf_scores"
|
862 |
+
]
|
863 |
+
},
|
864 |
+
{
|
865 |
+
"cell_type": "code",
|
866 |
+
"execution_count": 12,
|
867 |
+
"id": "677a8bab",
|
868 |
+
"metadata": {},
|
869 |
+
"outputs": [
|
870 |
+
{
|
871 |
+
"name": "stderr",
|
872 |
+
"output_type": "stream",
|
873 |
+
"text": [
|
874 |
+
"2022-02-01 20:00:27.115638: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:185] None of the MLIR Optimization Passes are enabled (registered 2)\n",
|
875 |
+
"2022-02-01 20:00:29.328848: I tensorflow/compiler/xla/service/service.cc:171] XLA service 0x7fe9781cd6f0 initialized for platform Host (this does not guarantee that XLA will be used). Devices:\n",
|
876 |
+
"2022-02-01 20:00:29.328894: I tensorflow/compiler/xla/service/service.cc:179] StreamExecutor device (0): Host, Default Version\n",
|
877 |
+
"2022-02-01 20:00:30.324558: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:210] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.\n",
|
878 |
+
"2022-02-01 20:01:02.775112: I tensorflow/compiler/jit/xla_compilation_cache.cc:363] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n"
|
879 |
+
]
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"name": "stdout",
|
883 |
+
"output_type": "stream",
|
884 |
+
"text": [
|
885 |
+
"(8, 768)\n"
|
886 |
+
]
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"data": {
|
890 |
+
"text/plain": [
|
891 |
+
"tensor([[1.0000, 0.9279, 0.6402, 0.5966, 0.5422, 0.5446, 0.6097, 0.6320],\n",
|
892 |
+
" [0.9279, 1.0000, 0.6631, 0.6099, 0.5566, 0.5690, 0.6386, 0.6268],\n",
|
893 |
+
" [0.6402, 0.6631, 1.0000, 0.8347, 0.7101, 0.6955, 0.6264, 0.6389],\n",
|
894 |
+
" [0.5966, 0.6099, 0.8347, 1.0000, 0.6873, 0.6712, 0.5899, 0.6100],\n",
|
895 |
+
" [0.5422, 0.5566, 0.7101, 0.6873, 1.0000, 0.8927, 0.5700, 0.5661],\n",
|
896 |
+
" [0.5446, 0.5690, 0.6955, 0.6712, 0.8927, 1.0000, 0.5663, 0.5458],\n",
|
897 |
+
" [0.6097, 0.6386, 0.6264, 0.5899, 0.5700, 0.5663, 1.0000, 0.7949],\n",
|
898 |
+
" [0.6320, 0.6268, 0.6389, 0.6100, 0.5661, 0.5458, 0.7949, 1.0000]])"
|
899 |
+
]
|
900 |
+
},
|
901 |
+
"execution_count": 12,
|
902 |
+
"metadata": {},
|
903 |
+
"output_type": "execute_result"
|
904 |
+
}
|
905 |
+
],
|
906 |
+
"source": [
|
907 |
+
"# Test the models - Original embeddings\n",
|
908 |
+
"english_embeds = encoder(english_sentences)[0].numpy()\n",
|
909 |
+
"print(english_embeds.shape)\n",
|
910 |
+
"tf_scores = util.dot_score(english_embeds, english_embeds).numpy()\n",
|
911 |
+
"print(tf_scores)\n",
|
912 |
+
"print(\"Diff:\", np.sum(np.abs(tf_scores - hf_scores)))"
|
913 |
+
]
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"cell_type": "code",
|
917 |
+
"execution_count": 13,
|
918 |
+
"id": "34b44ef7",
|
919 |
+
"metadata": {},
|
920 |
+
"outputs": [
|
921 |
+
{
|
922 |
+
"ename": "FileNotFoundError",
|
923 |
+
"evalue": "[Errno 2] No such file or directory: 'models/sentence-t5-11b/2_Dense/config.json'",
|
924 |
+
"output_type": "error",
|
925 |
+
"traceback": [
|
926 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
927 |
+
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
|
928 |
+
"\u001b[0;32m/tmp/ipykernel_26913/2543044366.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 7\u001b[0m bias=False, activation_function=torch.nn.Identity())\n\u001b[1;32m 8\u001b[0m \u001b[0mdense\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlinear\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlinear\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 9\u001b[0;31m \u001b[0mdense\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfolder\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'2_Dense'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 10\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
929 |
+
"\u001b[0;32m/home/sbert/sentence-transformers/sentence_transformers/models/Dense.py\u001b[0m in \u001b[0;36msave\u001b[0;34m(self, output_path)\u001b[0m\n\u001b[1;32m 46\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 47\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0msave\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moutput_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 48\u001b[0;31m \u001b[0;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moutput_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'config.json'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'w'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mfOut\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 49\u001b[0m \u001b[0mjson\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdump\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_config_dict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfOut\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 50\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
930 |
+
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'models/sentence-t5-11b/2_Dense/config.json'"
|
931 |
+
]
|
932 |
+
}
|
933 |
+
],
|
934 |
+
"source": [
|
935 |
+
"folder = f'models/sentence-t5-{model_size}'\n",
|
936 |
+
"t5.save_pretrained(folder)\n",
|
937 |
+
"tokenizer.save_pretrained(folder)\n",
|
938 |
+
"\n",
|
939 |
+
"import sentence_transformers\n",
|
940 |
+
"dense = sentence_transformers.models.Dense(linear.in_features, linear.out_features, \n",
|
941 |
+
" bias=False, activation_function=torch.nn.Identity())\n",
|
942 |
+
"dense.linear = linear\n",
|
943 |
+
"\n",
|
944 |
+
"dense_path = os.path.join(folder, '2_Dense')\n",
|
945 |
+
"os.makedirs(dense_path, exist_ok=True)\n",
|
946 |
+
"dense.save(dense_path)\n"
|
947 |
+
]
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"cell_type": "code",
|
951 |
+
"execution_count": 15,
|
952 |
+
"id": "f2d561c1",
|
953 |
+
"metadata": {},
|
954 |
+
"outputs": [],
|
955 |
+
"source": [
|
956 |
+
"\n"
|
957 |
+
]
|
958 |
+
}
|
959 |
+
],
|
960 |
+
"metadata": {
|
961 |
+
"kernelspec": {
|
962 |
+
"display_name": "Python 3 (ipykernel)",
|
963 |
+
"language": "python",
|
964 |
+
"name": "python3"
|
965 |
+
},
|
966 |
+
"language_info": {
|
967 |
+
"codemirror_mode": {
|
968 |
+
"name": "ipython",
|
969 |
+
"version": 3
|
970 |
+
},
|
971 |
+
"file_extension": ".py",
|
972 |
+
"mimetype": "text/x-python",
|
973 |
+
"name": "python",
|
974 |
+
"nbconvert_exporter": "python",
|
975 |
+
"pygments_lexer": "ipython3",
|
976 |
+
"version": "3.8.8"
|
977 |
+
}
|
978 |
+
},
|
979 |
+
"nbformat": 4,
|
980 |
+
"nbformat_minor": 5
|
981 |
+
}
|
convert_to_fp16.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from transformers import T5EncoderModel
|
3 |
+
|
4 |
+
in_path = sys.argv[1]
|
5 |
+
out_path = sys.argv[2]
|
6 |
+
|
7 |
+
model = T5EncoderModel.from_pretrained(in_path)
|
8 |
+
model.half()
|
9 |
+
model.save_pretrained(out_path)
|
modules.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Dense",
|
18 |
+
"type": "sentence_transformers.models.Dense"
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"idx": 3,
|
22 |
+
"name": "3",
|
23 |
+
"path": "3_Normalize",
|
24 |
+
"type": "sentence_transformers.models.Normalize"
|
25 |
+
}
|
26 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b91bd3ded13728f29297a9f2ee2a809acd211f52271a857488e491c4c345208
|
3 |
+
size 219303530
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"]}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d60acb128cf7b7f2536e8f38a5b18a05535c9e14c7a355904270e15b0945ea86
|
3 |
+
size 791656
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "extra_ids": 100, "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"], "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "t5-base", "tokenizer_class": "T5Tokenizer"}
|