--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert_finetune_own_data_model results: [] --- # distilbert_finetune_own_data_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0164 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 5 | 0.3930 | 1.0 | 0.25 | 0.4 | 0.76 | | No log | 2.0 | 10 | 0.0968 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 3.0 | 15 | 0.0267 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 4.0 | 20 | 0.0228 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 5.0 | 25 | 0.0164 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 6.0 | 30 | 0.0197 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 7.0 | 35 | 0.0228 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 8.0 | 40 | 0.0215 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2