File size: 8,779 Bytes
0936150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
---
language:
- en
license: cc-by-sa-4.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- DFKI-SLT/few-nerd
metrics:
- precision
- recall
- f1
widget:
- text: The Hebrew Union College libraries in Cincinnati and Los Angeles, the Library
    of Congress in Washington, D.C ., the Jewish Theological Seminary in New York
    City, and the Harvard University Library (which received donations of Deinard's
    texts from Lucius Nathan Littauer, housed in Widener and Houghton libraries) also
    have large collections of Deinard works.
- text: Abu Abd Allah Muhammad al-Idrisi (1099–1165 or 1166), the Moroccan Muslim
    geographer, cartographer, Egyptologist and traveller who lived in Sicily at the
    court of King Roger II, mentioned this island, naming it جزيرة مليطمة ("jazīrat
    Malīṭma", "the island of Malitma ") on page 583 of his book "Nuzhat al-mushtaq
    fi ihtiraq ghal afaq", otherwise known as The Book of Roger, considered a geographic
    encyclopaedia of the medieval world.
- text: The font is also used in the logo of the American rock band Greta Van Fleet,
    in the logo for Netflix show "Stranger Things ", and in the album art for rapper
    Logic's album "Supermarket ".
- text: Caretaker manager George Goss led them on a run in the FA Cup, defeating Liverpool
    in round 4, to reach the semi-final at Stamford Bridge, where they were defeated
    2–0 by Sheffield United on 28 March 1925.
- text: In 1991, the National Science Foundation (NSF), which manages the U.S . Antarctic
    Program (US AP), honoured his memory by dedicating a state-of-the-art laboratory
    complex in his name, the Albert P. Crary Science and Engineering Center (CSEC)
    located in McMurdo Station.
pipeline_tag: token-classification
base_model: bert-base-cased
model-index:
- name: SpanMarker with bert-base-cased on DFKI-SLT/few-nerd
  results:
  - task:
      type: token-classification
      name: Named Entity Recognition
    dataset:
      name: Unknown
      type: DFKI-SLT/few-nerd
      split: test
    metrics:
    - type: f1
      value: 0.7705915921628306
      name: F1
    - type: precision
      value: 0.7676710252037142
      name: Precision
    - type: recall
      value: 0.7735344662974986
      name: Recall
---

# SpanMarker with bert-base-cased on DFKI-SLT/few-nerd

This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [DFKI-SLT/few-nerd](https://huggingface.co/datasets/DFKI-SLT/few-nerd) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [bert-base-cased](https://huggingface.co/bert-base-cased) as the underlying encoder.

## Model Details

### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [bert-base-cased](https://huggingface.co/bert-base-cased)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [DFKI-SLT/few-nerd](https://huggingface.co/datasets/DFKI-SLT/few-nerd)
- **Language:** en
- **License:** cc-by-sa-4.0

### Model Sources

- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)

### Model Labels
| Label        | Examples                                                                       |
|:-------------|:-------------------------------------------------------------------------------|
| art          | "The Seven Year Itch", "Imelda de ' Lambertazzi", "Time"                       |
| building     | "Sheremetyevo International Airport", "Boston Garden", "Henry Ford Museum"     |
| event        | "French Revolution", "Iranian Constitutional Revolution", "Russian Revolution" |
| location     | "Croatian", "the Republic of Croatia", "Mediterranean Basin"                   |
| organization | "Church 's Chicken", "Texas Chicken", "IAEA"                                   |
| other        | "Amphiphysin", "BAR", "N-terminal lipid"                                       |
| person       | "Hicks", "Edmund Payne", "Ellaline Terriss"                                    |
| product      | "Corvettes - GT1 C6R", "Phantom", "100EX"                                      |

## Evaluation

### Metrics
| Label        | Precision | Recall | F1     |
|:-------------|:----------|:-------|:-------|
| **all**      | 0.7677    | 0.7735 | 0.7706 |
| art          | 0.7980    | 0.7349 | 0.7651 |
| building     | 0.6420    | 0.6735 | 0.6574 |
| event        | 0.6207    | 0.4977 | 0.5524 |
| location     | 0.8137    | 0.8573 | 0.8350 |
| organization | 0.7166    | 0.6809 | 0.6983 |
| other        | 0.6707    | 0.6734 | 0.6721 |
| person       | 0.8567    | 0.9144 | 0.8846 |
| product      | 0.6786    | 0.6441 | 0.6609 |

## Uses

### Direct Use for Inference

```python
from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Run inference
entities = model.predict("Caretaker manager George Goss led them on a run in the FA Cup, defeating Liverpool in round 4, to reach the semi-final at Stamford Bridge, where they were defeated 2–0 by Sheffield United on 28 March 1925.")
```

### Downstream Use
You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

```python
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")
```
</details>

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set          | Min | Median  | Max |
|:----------------------|:----|:--------|:----|
| Sentence length       | 1   | 24.4956 | 163 |
| Entities per sentence | 0   | 2.5439  | 35  |

### Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training Results
| Epoch  | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 0.1629 | 200  | 0.0302          | 0.7137               | 0.6190            | 0.6630        | 0.9013              |
| 0.3259 | 400  | 0.0237          | 0.7497               | 0.7108            | 0.7297        | 0.9257              |
| 0.4888 | 600  | 0.0215          | 0.7622               | 0.7268            | 0.7441        | 0.9292              |
| 0.6517 | 800  | 0.0213          | 0.7564               | 0.7619            | 0.7591        | 0.9355              |
| 0.8147 | 1000 | 0.0196          | 0.7783               | 0.7648            | 0.7715        | 0.9384              |
| 0.9776 | 1200 | 0.0196          | 0.7671               | 0.7783            | 0.7726        | 0.9390              |

### Framework Versions
- Python: 3.10.12
- SpanMarker: 1.5.0
- Transformers: 4.38.2
- PyTorch: 2.2.1+cu121
- Datasets: 2.18.0
- Tokenizers: 0.15.2

## Citation

### BibTeX
```
@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->