Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-improved.zip +3 -0
- ppo-LunarLander-v2-improved/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-improved/data +111 -0
- ppo-LunarLander-v2-improved/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-improved/policy.pth +3 -0
- ppo-LunarLander-v2-improved/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-improved/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 275.56 +/- 22.74
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x798afe4c9c60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x798afe4c9cf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x798afe4c9d80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x798afe4c9e10>", "_build": "<function ActorCriticPolicy._build at 0x798afe4c9ea0>", "forward": "<function ActorCriticPolicy.forward at 0x798afe4c9f30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x798afe4c9fc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x798afe4ca050>", "_predict": "<function ActorCriticPolicy._predict at 0x798afe4ca0e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x798afe4ca170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x798afe4ca200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x798afe4ca290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x798afe66bb40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVVAAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE0AAU0AAU0AAWWMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUdS4=", "net_arch": [256, 256, 256], "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>"}, "num_timesteps": 3000320, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694457874385438107, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWVIQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwNLBEtDQxxkAX0BZAJ9AnwBfAAUAHwCZAN8ABgAFAAXAFMAlChORz8qNuLrHEMtRz7k+LWI42jxSwF0lCmMEnByb2dyZXNzX3JlbWFpbmluZ5SMCHN0YXJ0X2xylIwGZW5kX2xylIeUjB88aXB5dGhvbi1pbnB1dC01MC01ODk2MTllY2M2Y2I+lIwWbGVhcm5pbmdfcmF0ZV9zY2hlZHVsZZRLFEMGBAEEARQBlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgYfZR9lChoFWgPjAxfX3F1YWxuYW1lX1+UaA+MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBaMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM2RubzI67A/Vj+Jvtssgb7ZG9m6zBGDvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00010666666666669933, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDsCcCo0hyMAWyUS9aMAXSUR0C6VuznV5KOdX2UKGgGR0Byp3XPJJXhaAdL7GgIR0C6V6mTkhicdX2UKGgGR0BwWtaNdZ7paAdLmGgIR0C6V+gv6CUYdX2UKGgGR0Bl3RuKoAGTaAdN6ANoCEdAuloDWPLgXXV9lChoBkdAcBwCIDYAbWgHS81oCEdAulpbP3SKFnV9lChoBkdAb7tiADq4Y2gHS69oCEdAulqlGMGX5XV9lChoBkdAcRVYNAkcCGgHS9NoCEdAulsBdTo+wHV9lChoBkdAcaz3fhuO0mgHTTABaAhHQLpb47bL2Yh1fZQoaAZHQG/Sx1xKg7JoB0u5aAhHQLpcMxFy7wt1fZQoaAZHQHH0F89fTkRoB0vsaAhHQLpcmx0uDjB1fZQoaAZHQHD+YChew9toB0usaAhHQLpc9msNlRR1fZQoaAZHQHGOWmYSg5BoB00jAWgIR0C6XagBgeA/dX2UKGgGR0Bx09wbVBldaAdL9mgIR0C6XkFWwNb1dX2UKGgGR0Bud/Q0GeMAaAdLnmgIR0C6XprqMWGidX2UKGgGR0BwaA9hZyMlaAdLvGgIR0C6XxFbzK9xdX2UKGgGR0Bw/bYDklu4aAdLsGgIR0C6X4kLc9GJdX2UKGgGR0BlzlwHZ9NOaAdN6ANoCEdAumLcrCm/FnV9lChoBkdAcKPNorWiDmgHS+FoCEdAumM+8IzFdnV9lChoBkdAcf8iItUXHmgHTRYBaAhHQLpjuwdsBQx1fZQoaAZHQHJb4QFs54poB0vkaAhHQLpkHhDw6Qx1fZQoaAZHwBT0Oy3Td+JoB0uvaAhHQLpka6TGHYZ1fZQoaAZHQHHlNPxhDw9oB0vjaAhHQLpkzkd3jdZ1fZQoaAZHQHE1FH4GlhxoB0vNaAhHQLplKMxGlRB1fZQoaAZHQHBwWu5jH4poB0uSaAhHQLplwPgvUSZ1fZQoaAZHQEg4jafzz3BoB0uqaAhHQLpmCOH31z11fZQoaAZHQHFxAqy4Wk9oB0vfaAhHQLpmatITXat1fZQoaAZHQG6JWyLQ5WBoB0uuaAhHQLpmsXb/Ot51fZQoaAZHQHEvi4e9zwNoB0ueaAhHQLpm8iA2AG11fZQoaAZHQHBCsjRlYlpoB0ukaAhHQLpnNHMEA5t1fZQoaAZHQHB1+CXhOxloB00bAWgIR0C6Z7jrqt5ldX2UKGgGR0ByXkJ4SpR5aAdLs2gIR0C6aAPEn9ehdX2UKGgGR0BxUoPGyX2NaAdL92gIR0C6aHOBYmsvdX2UKGgGR0Bvwda2WpqAaAdLpGgIR0C6aLiNS619dX2UKGgGR0Buh3gtOEdvaAdLs2gIR0C6aV0rwvxpdX2UKGgGR0BwUPkiliz+aAdL02gIR0C6acG+XZ5BdX2UKGgGR0BwUXoOhCdCaAdLw2gIR0C6ahSG8EmqdX2UKGgGR0BxPeNR3u/laAdLkmgIR0C6alIYJmdzdX2UKGgGR0ByIeB19v0iaAdLzWgIR0C6aqwdXDFZdX2UKGgGR0BwiwINVinYaAdLqmgIR0C6avHqZ+hHdX2UKGgGR0BwPMK6WgOCaAdL0GgIR0C6a0iW3Sa3dX2UKGgGR0ByzJtBOYY0aAdLvmgIR0C6a5wRGtp3dX2UKGgGR0BxJ8z41xbTaAdLoGgIR0C6a95bD/EPdX2UKGgGR0BxRxBfKISEaAdLtmgIR0C6bCzcM3IddX2UKGgGR0BwTPcj7hvSaAdLqWgIR0C6bJBJZntfdX2UKGgGR0BjvcgdOqNqaAdN6ANoCEdAum+5/axoqXV9lChoBkdAcg5wsGxD9mgHS9RoCEdAunBHVNHpbHV9lChoBkdAZWO2E0zj3mgHTegDaAhHQLpy3cpLEk11fZQoaAZHQHIrmK/EfkpoB0vDaAhHQLpziFuvUz91fZQoaAZHQG6OXHBDXvpoB0upaAhHQLpz0AbyYol1fZQoaAZHQHIzpULlV95oB0uoaAhHQLp0FkmhM8J1fZQoaAZHQHFnSiItUXJoB0vmaAhHQLp0fGKAJ9l1fZQoaAZHQG8MZooNNJxoB0vXaAhHQLp02dI5HVh1fZQoaAZHQHOTaJEYwZhoB00rAWgIR0C6dWWHtWuHdX2UKGgGR0BkeFrGipNsaAdN6ANoCEdAunfUL0BfbHV9lChoBkdAct8M0gr6L2gHS65oCEdAunggO9WZJHV9lChoBkdAcYGzreIl+mgHS9RoCEdAunh7USZjQXV9lChoBkdAcB2uYx+KCWgHS9hoCEdAunjbN6gM+nV9lChoBkdAcP3guyu6mWgHS7ZoCEdAunkoH1OCXnV9lChoBkdAcgWWCmMwUWgHS/xoCEdAunmddzGPxXV9lChoBkdAb016E8JUpGgHS+doCEdAunoDm8ujAXV9lChoBkdAcViC3PRiPWgHS/9oCEdAunp0LMLWqnV9lChoBkdAcUz2P1ct5GgHTQcBaAhHQLp67WeYlY51fZQoaAZHQHHLnaSLZSNoB0vIaAhHQLp7pan75211fZQoaAZHQC8gVARkEs9oB0t7aAhHQLp77FQ2uPp1fZQoaAZHQHAfQNXo1UFoB0uaaAhHQLp8RHymQ8x1fZQoaAZHQGUgHYg7o0RoB03oA2gIR0C6fxAiml67dX2UKGgGR0Byxk7KaG5+aAdLvGgIR0C6f4pNwiqydX2UKGgGR0BxV1o9LYf5aAdNEAFoCEdAuoA7UVi4KHV9lChoBkdAcORwR5C4SmgHS7RoCEdAuoEYchkiEHV9lChoBkdAQYEvkBCD3GgHS3NoCEdAuoFH6yjYZnV9lChoBkdAcZyEQXhwVGgHS8xoCEdAuoGgESuhbnV9lChoBkdAZEF+w1R+B2gHTegDaAhHQLqDmbADaGp1fZQoaAZHQHIJUYoAn2JoB00QA2gIR0C6hVo3aSLZdX2UKGgGR0ByKF0ihWYGaAdL4GgIR0C6hcKVII4VdX2UKGgGR0BwGLSE12q2aAdLq2gIR0C6hgiADq4ZdX2UKGgGR0BwKLBFd9lVaAdLpWgIR0C6hk82rGR3dX2UKGgGR0BwEev7m+0xaAdLv2gIR0C6hqAwGnn/dX2UKGgGR0ByLrW1+iJwaAdL+mgIR0C6hw0dBBzFdX2UKGgGR0BGzcAaNuLraAdLfmgIR0C6h0FHe7+UdX2UKGgGR0BxbINmUW2xaAdNOwFoCEdAuofQC2c8T3V9lChoBkdAZ9gLkS26TWgHTegDaAhHQLqJ+F5fMOh1fZQoaAZHQG/B127nPmhoB0u8aAhHQLqKSQkHD791fZQoaAZHQHB4P0ulGgBoB0ubaAhHQLqKjKOktVd1fZQoaAZHQHF9DP8hs69oB0uZaAhHQLqKyjvd/KB1fZQoaAZHQHC6u+M6zVtoB0uUaAhHQLqLE4tHxz91fZQoaAZHQD684NqgyuZoB0u6aAhHQLqLh2MbWEt1fZQoaAZHQHINQ1ejVQRoB00JAWgIR0C6jCVpPAO8dX2UKGgGR0BxqUmgJ1JUaAdNCQFoCEdAuozHE1l5GHV9lChoBkdAcyJIP9UCJWgHTQkBaAhHQLqN7ybQTmJ1fZQoaAZHQHGGBK15Sm9oB0vnaAhHQLqOieiSJTF1fZQoaAZHQHHSNqxkd3loB0u/aAhHQLqPAAhje9B1fZQoaAZHQGSzPs7dSEVoB03oA2gIR0C6kZ5YgaFVdX2UKGgGR0Bix/7k4m1IaAdN6ANoCEdAupQUrDqGDnV9lChoBkdAclWo2n8892gHS/RoCEdAupR89ECvHXV9lChoBkdAcJkAfdRBNWgHTTMBaAhHQLqVFqjJuEV1fZQoaAZHQHGPJf+jua5oB0v4aAhHQLqVgRv3rUt1fZQoaAZHQHGTTLwF1SxoB00iAWgIR0C6lgTeoDPodX2UKGgGR0BxPRlDneSCaAdLyWgIR0C6llo9kjHGdX2UKGgGR0BveKD0163RaAdLrmgIR0C6mAfDtPYWdX2UKGgGR0Bvlcw8GLUDaAdLrWgIR0C6mE7jPv8ZdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5860, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.98, "gae_lambda": 0.92, "ent_coef": 0.015, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVIQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwNLBEtDQxxkAX0BZAJ9AnwBfAAUAHwCZAN8ABgAFAAXAFMAlChORz8qNuLrHEMtRz7k+LWI42jxSwF0lCmMEnByb2dyZXNzX3JlbWFpbmluZ5SMCHN0YXJ0X2xylIwGZW5kX2xylIeUjB88aXB5dGhvbi1pbnB1dC01MC01ODk2MTllY2M2Y2I+lIwWbGVhcm5pbmdfcmF0ZV9zY2hlZHVsZZRLFEMGBAEEARQBlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgYfZR9lChoFWgPjAxfX3F1YWxuYW1lX1+UaA+MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBaMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2-improved.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:134e29557400158e9b1d4e5d87f85ac3e2e87520742cc061f710219abd3602e1
|
3 |
+
size 3262799
|
ppo-LunarLander-v2-improved/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2-improved/data
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x798afe4c9c60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x798afe4c9cf0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x798afe4c9d80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x798afe4c9e10>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x798afe4c9ea0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x798afe4c9f30>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x798afe4c9fc0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x798afe4ca050>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x798afe4ca0e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x798afe4ca170>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x798afe4ca200>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x798afe4ca290>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x798afe66bb40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVVAAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE0AAU0AAU0AAWWMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUdS4=",
|
26 |
+
"net_arch": [
|
27 |
+
256,
|
28 |
+
256,
|
29 |
+
256
|
30 |
+
],
|
31 |
+
"activation_fn": "<class 'torch.nn.modules.activation.ReLU'>"
|
32 |
+
},
|
33 |
+
"num_timesteps": 3000320,
|
34 |
+
"_total_timesteps": 3000000,
|
35 |
+
"_num_timesteps_at_start": 0,
|
36 |
+
"seed": null,
|
37 |
+
"action_noise": null,
|
38 |
+
"start_time": 1694457874385438107,
|
39 |
+
"learning_rate": {
|
40 |
+
":type:": "<class 'function'>",
|
41 |
+
":serialized:": "gAWVIQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwNLBEtDQxxkAX0BZAJ9AnwBfAAUAHwCZAN8ABgAFAAXAFMAlChORz8qNuLrHEMtRz7k+LWI42jxSwF0lCmMEnByb2dyZXNzX3JlbWFpbmluZ5SMCHN0YXJ0X2xylIwGZW5kX2xylIeUjB88aXB5dGhvbi1pbnB1dC01MC01ODk2MTllY2M2Y2I+lIwWbGVhcm5pbmdfcmF0ZV9zY2hlZHVsZZRLFEMGBAEEARQBlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgYfZR9lChoFWgPjAxfX3F1YWxuYW1lX1+UaA+MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBaMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
42 |
+
},
|
43 |
+
"tensorboard_log": null,
|
44 |
+
"_last_obs": {
|
45 |
+
":type:": "<class 'numpy.ndarray'>",
|
46 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM2RubzI67A/Vj+Jvtssgb7ZG9m6zBGDvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
47 |
+
},
|
48 |
+
"_last_episode_starts": {
|
49 |
+
":type:": "<class 'numpy.ndarray'>",
|
50 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
51 |
+
},
|
52 |
+
"_last_original_obs": null,
|
53 |
+
"_episode_num": 0,
|
54 |
+
"use_sde": false,
|
55 |
+
"sde_sample_freq": -1,
|
56 |
+
"_current_progress_remaining": -0.00010666666666669933,
|
57 |
+
"_stats_window_size": 100,
|
58 |
+
"ep_info_buffer": {
|
59 |
+
":type:": "<class 'collections.deque'>",
|
60 |
+
":serialized:": "gAWV+AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDsCcCo0hyMAWyUS9aMAXSUR0C6VuznV5KOdX2UKGgGR0Byp3XPJJXhaAdL7GgIR0C6V6mTkhicdX2UKGgGR0BwWtaNdZ7paAdLmGgIR0C6V+gv6CUYdX2UKGgGR0Bl3RuKoAGTaAdN6ANoCEdAuloDWPLgXXV9lChoBkdAcBwCIDYAbWgHS81oCEdAulpbP3SKFnV9lChoBkdAb7tiADq4Y2gHS69oCEdAulqlGMGX5XV9lChoBkdAcRVYNAkcCGgHS9NoCEdAulsBdTo+wHV9lChoBkdAcaz3fhuO0mgHTTABaAhHQLpb47bL2Yh1fZQoaAZHQG/Sx1xKg7JoB0u5aAhHQLpcMxFy7wt1fZQoaAZHQHH0F89fTkRoB0vsaAhHQLpcmx0uDjB1fZQoaAZHQHD+YChew9toB0usaAhHQLpc9msNlRR1fZQoaAZHQHGOWmYSg5BoB00jAWgIR0C6XagBgeA/dX2UKGgGR0Bx09wbVBldaAdL9mgIR0C6XkFWwNb1dX2UKGgGR0Bud/Q0GeMAaAdLnmgIR0C6XprqMWGidX2UKGgGR0BwaA9hZyMlaAdLvGgIR0C6XxFbzK9xdX2UKGgGR0Bw/bYDklu4aAdLsGgIR0C6X4kLc9GJdX2UKGgGR0BlzlwHZ9NOaAdN6ANoCEdAumLcrCm/FnV9lChoBkdAcKPNorWiDmgHS+FoCEdAumM+8IzFdnV9lChoBkdAcf8iItUXHmgHTRYBaAhHQLpjuwdsBQx1fZQoaAZHQHJb4QFs54poB0vkaAhHQLpkHhDw6Qx1fZQoaAZHwBT0Oy3Td+JoB0uvaAhHQLpka6TGHYZ1fZQoaAZHQHHlNPxhDw9oB0vjaAhHQLpkzkd3jdZ1fZQoaAZHQHE1FH4GlhxoB0vNaAhHQLplKMxGlRB1fZQoaAZHQHBwWu5jH4poB0uSaAhHQLplwPgvUSZ1fZQoaAZHQEg4jafzz3BoB0uqaAhHQLpmCOH31z11fZQoaAZHQHFxAqy4Wk9oB0vfaAhHQLpmatITXat1fZQoaAZHQG6JWyLQ5WBoB0uuaAhHQLpmsXb/Ot51fZQoaAZHQHEvi4e9zwNoB0ueaAhHQLpm8iA2AG11fZQoaAZHQHBCsjRlYlpoB0ukaAhHQLpnNHMEA5t1fZQoaAZHQHB1+CXhOxloB00bAWgIR0C6Z7jrqt5ldX2UKGgGR0ByXkJ4SpR5aAdLs2gIR0C6aAPEn9ehdX2UKGgGR0BxUoPGyX2NaAdL92gIR0C6aHOBYmsvdX2UKGgGR0Bvwda2WpqAaAdLpGgIR0C6aLiNS619dX2UKGgGR0Buh3gtOEdvaAdLs2gIR0C6aV0rwvxpdX2UKGgGR0BwUPkiliz+aAdL02gIR0C6acG+XZ5BdX2UKGgGR0BwUXoOhCdCaAdLw2gIR0C6ahSG8EmqdX2UKGgGR0BxPeNR3u/laAdLkmgIR0C6alIYJmdzdX2UKGgGR0ByIeB19v0iaAdLzWgIR0C6aqwdXDFZdX2UKGgGR0BwiwINVinYaAdLqmgIR0C6avHqZ+hHdX2UKGgGR0BwPMK6WgOCaAdL0GgIR0C6a0iW3Sa3dX2UKGgGR0ByzJtBOYY0aAdLvmgIR0C6a5wRGtp3dX2UKGgGR0BxJ8z41xbTaAdLoGgIR0C6a95bD/EPdX2UKGgGR0BxRxBfKISEaAdLtmgIR0C6bCzcM3IddX2UKGgGR0BwTPcj7hvSaAdLqWgIR0C6bJBJZntfdX2UKGgGR0BjvcgdOqNqaAdN6ANoCEdAum+5/axoqXV9lChoBkdAcg5wsGxD9mgHS9RoCEdAunBHVNHpbHV9lChoBkdAZWO2E0zj3mgHTegDaAhHQLpy3cpLEk11fZQoaAZHQHIrmK/EfkpoB0vDaAhHQLpziFuvUz91fZQoaAZHQG6OXHBDXvpoB0upaAhHQLpz0AbyYol1fZQoaAZHQHIzpULlV95oB0uoaAhHQLp0FkmhM8J1fZQoaAZHQHFnSiItUXJoB0vmaAhHQLp0fGKAJ9l1fZQoaAZHQG8MZooNNJxoB0vXaAhHQLp02dI5HVh1fZQoaAZHQHOTaJEYwZhoB00rAWgIR0C6dWWHtWuHdX2UKGgGR0BkeFrGipNsaAdN6ANoCEdAunfUL0BfbHV9lChoBkdAct8M0gr6L2gHS65oCEdAunggO9WZJHV9lChoBkdAcYGzreIl+mgHS9RoCEdAunh7USZjQXV9lChoBkdAcB2uYx+KCWgHS9hoCEdAunjbN6gM+nV9lChoBkdAcP3guyu6mWgHS7ZoCEdAunkoH1OCXnV9lChoBkdAcgWWCmMwUWgHS/xoCEdAunmddzGPxXV9lChoBkdAb016E8JUpGgHS+doCEdAunoDm8ujAXV9lChoBkdAcViC3PRiPWgHS/9oCEdAunp0LMLWqnV9lChoBkdAcUz2P1ct5GgHTQcBaAhHQLp67WeYlY51fZQoaAZHQHHLnaSLZSNoB0vIaAhHQLp7pan75211fZQoaAZHQC8gVARkEs9oB0t7aAhHQLp77FQ2uPp1fZQoaAZHQHAfQNXo1UFoB0uaaAhHQLp8RHymQ8x1fZQoaAZHQGUgHYg7o0RoB03oA2gIR0C6fxAiml67dX2UKGgGR0Byxk7KaG5+aAdLvGgIR0C6f4pNwiqydX2UKGgGR0BxV1o9LYf5aAdNEAFoCEdAuoA7UVi4KHV9lChoBkdAcORwR5C4SmgHS7RoCEdAuoEYchkiEHV9lChoBkdAQYEvkBCD3GgHS3NoCEdAuoFH6yjYZnV9lChoBkdAcZyEQXhwVGgHS8xoCEdAuoGgESuhbnV9lChoBkdAZEF+w1R+B2gHTegDaAhHQLqDmbADaGp1fZQoaAZHQHIJUYoAn2JoB00QA2gIR0C6hVo3aSLZdX2UKGgGR0ByKF0ihWYGaAdL4GgIR0C6hcKVII4VdX2UKGgGR0BwGLSE12q2aAdLq2gIR0C6hgiADq4ZdX2UKGgGR0BwKLBFd9lVaAdLpWgIR0C6hk82rGR3dX2UKGgGR0BwEev7m+0xaAdLv2gIR0C6hqAwGnn/dX2UKGgGR0ByLrW1+iJwaAdL+mgIR0C6hw0dBBzFdX2UKGgGR0BGzcAaNuLraAdLfmgIR0C6h0FHe7+UdX2UKGgGR0BxbINmUW2xaAdNOwFoCEdAuofQC2c8T3V9lChoBkdAZ9gLkS26TWgHTegDaAhHQLqJ+F5fMOh1fZQoaAZHQG/B127nPmhoB0u8aAhHQLqKSQkHD791fZQoaAZHQHB4P0ulGgBoB0ubaAhHQLqKjKOktVd1fZQoaAZHQHF9DP8hs69oB0uZaAhHQLqKyjvd/KB1fZQoaAZHQHC6u+M6zVtoB0uUaAhHQLqLE4tHxz91fZQoaAZHQD684NqgyuZoB0u6aAhHQLqLh2MbWEt1fZQoaAZHQHINQ1ejVQRoB00JAWgIR0C6jCVpPAO8dX2UKGgGR0BxqUmgJ1JUaAdNCQFoCEdAuozHE1l5GHV9lChoBkdAcyJIP9UCJWgHTQkBaAhHQLqN7ybQTmJ1fZQoaAZHQHGGBK15Sm9oB0vnaAhHQLqOieiSJTF1fZQoaAZHQHHSNqxkd3loB0u/aAhHQLqPAAhje9B1fZQoaAZHQGSzPs7dSEVoB03oA2gIR0C6kZ5YgaFVdX2UKGgGR0Bix/7k4m1IaAdN6ANoCEdAupQUrDqGDnV9lChoBkdAclWo2n8892gHS/RoCEdAupR89ECvHXV9lChoBkdAcJkAfdRBNWgHTTMBaAhHQLqVFqjJuEV1fZQoaAZHQHGPJf+jua5oB0v4aAhHQLqVgRv3rUt1fZQoaAZHQHGTTLwF1SxoB00iAWgIR0C6lgTeoDPodX2UKGgGR0BxPRlDneSCaAdLyWgIR0C6llo9kjHGdX2UKGgGR0BveKD0163RaAdLrmgIR0C6mAfDtPYWdX2UKGgGR0Bvlcw8GLUDaAdLrWgIR0C6mE7jPv8ZdWUu"
|
61 |
+
},
|
62 |
+
"ep_success_buffer": {
|
63 |
+
":type:": "<class 'collections.deque'>",
|
64 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
65 |
+
},
|
66 |
+
"_n_updates": 5860,
|
67 |
+
"observation_space": {
|
68 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
69 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
70 |
+
"dtype": "float32",
|
71 |
+
"bounded_below": "[ True True True True True True True True]",
|
72 |
+
"bounded_above": "[ True True True True True True True True]",
|
73 |
+
"_shape": [
|
74 |
+
8
|
75 |
+
],
|
76 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
77 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
78 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
79 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
80 |
+
"_np_random": null
|
81 |
+
},
|
82 |
+
"action_space": {
|
83 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
84 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
85 |
+
"n": "4",
|
86 |
+
"start": "0",
|
87 |
+
"_shape": [],
|
88 |
+
"dtype": "int64",
|
89 |
+
"_np_random": null
|
90 |
+
},
|
91 |
+
"n_envs": 1,
|
92 |
+
"n_steps": 2048,
|
93 |
+
"gamma": 0.98,
|
94 |
+
"gae_lambda": 0.92,
|
95 |
+
"ent_coef": 0.015,
|
96 |
+
"vf_coef": 0.5,
|
97 |
+
"max_grad_norm": 0.5,
|
98 |
+
"batch_size": 128,
|
99 |
+
"n_epochs": 4,
|
100 |
+
"clip_range": {
|
101 |
+
":type:": "<class 'function'>",
|
102 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
103 |
+
},
|
104 |
+
"clip_range_vf": null,
|
105 |
+
"normalize_advantage": true,
|
106 |
+
"target_kl": null,
|
107 |
+
"lr_schedule": {
|
108 |
+
":type:": "<class 'function'>",
|
109 |
+
":serialized:": "gAWVIQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwNLBEtDQxxkAX0BZAJ9AnwBfAAUAHwCZAN8ABgAFAAXAFMAlChORz8qNuLrHEMtRz7k+LWI42jxSwF0lCmMEnByb2dyZXNzX3JlbWFpbmluZ5SMCHN0YXJ0X2xylIwGZW5kX2xylIeUjB88aXB5dGhvbi1pbnB1dC01MC01ODk2MTllY2M2Y2I+lIwWbGVhcm5pbmdfcmF0ZV9zY2hlZHVsZZRLFEMGBAEEARQBlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgYfZR9lChoFWgPjAxfX3F1YWxuYW1lX1+UaA+MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBaMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
110 |
+
}
|
111 |
+
}
|
ppo-LunarLander-v2-improved/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9343d04406555d545ccaf59192752b3cd14ef14181281176363f450ae6b3961
|
3 |
+
size 2165333
|
ppo-LunarLander-v2-improved/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b6b4e31b1d2544a51087e3508c87cb7a9d0c7c803db75ae2677d1911aa9694b
|
3 |
+
size 1081781
|
ppo-LunarLander-v2-improved/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-improved/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (158 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 275.55906890454446, "std_reward": 22.744452441902386, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-11T20:39:12.806427"}
|