--- tags: - merge - mergekit base_model: - SanjiWatsuki/Kunoichi-DPO-v2-7B - CultriX/NeuralTrix-7B-dpo --- # KuTrix-7b This is a merge of pre-trained language models created using mergekit. ## Merge Details ### Merge Method This model was merged using the **DARE TIES** merge method using [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) as a base. ### Models Merged The following models were included in the merge: * [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B) * [CultriX/NeuralTrix-7B-dpo](https://huggingface.co/CultriX/NeuralTrix-7B-dpo) ## Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: mistralai/Mistral-7B-v0.1 # No parameters necessary for base model - model: SanjiWatsuki/Kunoichi-DPO-v2-7B parameters: weight: 0.49 density: 0.6 - model: CultriX/NeuralTrix-7B-dpo parameters: weight: 0.4 density: 0.6 merge_method: dare_ties base_model: mistralai/Mistral-7B-v0.1 parameters: int8_mask: true dtype: bfloat16 ``` ## Usage Example ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "seyf1elislam/KuTrix-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```