File size: 6,332 Bytes
6f3bdf9
 
 
 
 
 
 
 
 
 
f050c92
 
6f3bdf9
 
 
 
f050c92
6f3bdf9
 
 
 
f050c92
6f3bdf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f050c92
6f3bdf9
 
 
 
 
 
 
 
 
f050c92
6f3bdf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1952e6
6f3bdf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os

os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"

import argparse
import shutil
import subprocess
import tempfile
from typing import List, Optional

import requests
import wandb.apis.public
from huggingface_hub.hf_api import HfApi, upload_folder
from huggingface_hub.repocard import metadata_save
from pyvirtualdisplay.display import Display

import wandb
from rl_algo_impls.publish.markdown_format import EvalTableData, model_card_text
from rl_algo_impls.runner.config import EnvHyperparams
from rl_algo_impls.runner.evaluate import EvalArgs, evaluate_model
from rl_algo_impls.shared.callbacks.eval_callback import evaluate
from rl_algo_impls.shared.vec_env import make_eval_env
from rl_algo_impls.wrappers.vec_episode_recorder import VecEpisodeRecorder


def publish(
    wandb_run_paths: List[str],
    wandb_report_url: str,
    huggingface_user: Optional[str] = None,
    huggingface_token: Optional[str] = None,
    virtual_display: bool = False,
) -> None:
    if virtual_display:
        display = Display(visible=False, size=(1400, 900))
        display.start()

    api = wandb.Api()
    runs = [api.run(rp) for rp in wandb_run_paths]
    algo = runs[0].config["algo"]
    hyperparam_id = runs[0].config["env"]
    evaluations = [
        evaluate_model(
            EvalArgs(
                algo,
                hyperparam_id,
                seed=r.config.get("seed", None),
                render=False,
                best=True,
                n_envs=None,
                n_episodes=10,
                no_print_returns=True,
                wandb_run_path="/".join(r.path),
            ),
            os.getcwd(),
        )
        for r in runs
    ]
    run_metadata = requests.get(runs[0].file("wandb-metadata.json").url).json()
    table_data = list(EvalTableData(r, e) for r, e in zip(runs, evaluations))
    best_eval = sorted(
        table_data, key=lambda d: d.evaluation.stats.score, reverse=True
    )[0]

    with tempfile.TemporaryDirectory() as tmpdirname:
        _, (policy, stats, config) = best_eval

        repo_name = config.model_name(include_seed=False)
        repo_dir_path = os.path.join(tmpdirname, repo_name)
        # Locally clone this repo to a temp directory
        subprocess.run(["git", "clone", ".", repo_dir_path])
        shutil.rmtree(os.path.join(repo_dir_path, ".git"))
        model_path = config.model_dir_path(best=True, downloaded=True)
        shutil.copytree(
            model_path,
            os.path.join(
                repo_dir_path, "saved_models", config.model_dir_name(best=True)
            ),
        )

        github_url = "https://github.com/sgoodfriend/rl-algo-impls"
        commit_hash = run_metadata.get("git", {}).get("commit", None)
        env_id = runs[0].config.get("env_id") or runs[0].config["env"]
        card_text = model_card_text(
            algo,
            env_id,
            github_url,
            commit_hash,
            wandb_report_url,
            table_data,
            best_eval,
        )
        readme_filepath = os.path.join(repo_dir_path, "README.md")
        os.remove(readme_filepath)
        with open(readme_filepath, "w") as f:
            f.write(card_text)

        metadata = {
            "library_name": "rl-algo-impls",
            "tags": [
                env_id,
                algo,
                "deep-reinforcement-learning",
                "reinforcement-learning",
            ],
            "model-index": [
                {
                    "name": algo,
                    "results": [
                        {
                            "metrics": [
                                {
                                    "type": "mean_reward",
                                    "value": str(stats.score),
                                    "name": "mean_reward",
                                }
                            ],
                            "task": {
                                "type": "reinforcement-learning",
                                "name": "reinforcement-learning",
                            },
                            "dataset": {
                                "name": env_id,
                                "type": env_id,
                            },
                        }
                    ],
                }
            ],
        }
        metadata_save(readme_filepath, metadata)

        video_env = VecEpisodeRecorder(
            make_eval_env(
                config,
                EnvHyperparams(**config.env_hyperparams),
                override_hparams={"n_envs": 1},
                normalize_load_path=model_path,
            ),
            os.path.join(repo_dir_path, "replay"),
            max_video_length=3600,
        )
        evaluate(
            video_env,
            policy,
            1,
            deterministic=config.eval_hyperparams.get("deterministic", True),
        )

        api = HfApi()
        huggingface_user = huggingface_user or api.whoami()["name"]
        huggingface_repo = f"{huggingface_user}/{repo_name}"
        api.create_repo(
            token=huggingface_token,
            repo_id=huggingface_repo,
            private=False,
            exist_ok=True,
        )
        repo_url = upload_folder(
            repo_id=huggingface_repo,
            folder_path=repo_dir_path,
            path_in_repo="",
            commit_message=f"{algo.upper()} playing {env_id} from {github_url}/tree/{commit_hash}",
            token=huggingface_token,
            delete_patterns="*",
        )
        print(f"Pushed model to the hub: {repo_url}")


def huggingface_publish():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--wandb-run-paths",
        type=str,
        nargs="+",
        help="Run paths of the form entity/project/run_id",
    )
    parser.add_argument("--wandb-report-url", type=str, help="Link to WandB report")
    parser.add_argument(
        "--huggingface-user",
        type=str,
        help="Huggingface user or team to upload model cards",
        default=None,
    )
    parser.add_argument(
        "--virtual-display", action="store_true", help="Use headless virtual display"
    )
    args = parser.parse_args()
    print(args)
    publish(**vars(args))


if __name__ == "__main__":
    huggingface_publish()