File size: 1,901 Bytes
8e8e1d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fc668e
8e8e1d1
ac9930b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43bb7ec
ac9930b
 
 
 
 
 
 
 
 
 
 
 
6fc668e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
tags:
- image-classification
- tensorflow
- keras
- computer-vision
- animal-recognition
license: apache-2.0
library_name: keras
language: en
datasets:
- custom-dataset
metrics:
- accuracy
model_creator: AEROVERSE
model_type: Custom CNN
num_classes: 10
training_data: Custom animal dataset
validation_split: 20%
epochs: 500
early_stopping: patience=5, restore_best_weights=True
dropout: 0.5
optimizer: Adam
loss: sparse_categorical_crossentropy
input_shape: (256, 256, 3)
output_activation: softmax
checkpoint: best_model.weights.h5
pipeline_tag: image-classification
---

# Animal Recognition Model

## Model Overview
This model is designed to classify images of animals into predefined categories. It uses a ResNet50V2 base model and has been trained on a custom dataset.

## Classes
The model was trained on the following classes:
- cat
- dog
- horse
- lion
- tiger
- elephant

## Usage
1. Load the model using TensorFlow/Keras.
2. Preprocess the input image to a size of 256x256 and normalize it.
3. Pass the preprocessed image to the model for prediction.

```python
from keras.models import load_model
import numpy as np
from tensorflow.keras.utils import load_img, img_to_array

def predict_image(image_path, model):
    img = load_img(image_path, target_size=(256, 256))
    img_array = img_to_array(img) / 255.0
    img_array = np.expand_dims(img_array, axis=0)
    prediction = model.predict(img_array)
    return np.argmax(prediction, axis=1)

model = load_model('best_model.weights.h5')
predicted_class = predict_image('image.jpg', model)
print(f"Predicted class: {predicted_class}")
```

## Training Details
- **Base Model:** ResNet50V2 (pretrained on ImageNet)
- **Dataset:** Custom animal dataset
- **Optimizer:** Adam
- **Loss Function:** Sparse Categorical Crossentropy
- **Metrics:** Accuracy
- **Augmentation:** Applied during training

## Model Performance
Will be updated soon