--- tags: - image-classification - tensorflow - keras - computer-vision - animal-recognition license: apache-2.0 library_name: keras language: en datasets: - custom-dataset metrics: - accuracy model_creator: AEROVERSE model_type: Custom CNN num_classes: 10 training_data: Custom animal dataset validation_split: 20% epochs: 500 early_stopping: patience=5, restore_best_weights=True dropout: 0.5 optimizer: Adam loss: sparse_categorical_crossentropy input_shape: (256, 256, 3) output_activation: softmax checkpoint: best_model.weights.h5 pipeline_tag: image-classification --- # Animal Recognition Model ## Model Overview This model is designed to classify images of animals into predefined categories. It uses a ResNet50V2 base model and has been trained on a custom dataset. ## Classes The model was trained on the following classes: - cat - dog - horse - lion - tiger - elephant ## Usage 1. Load the model using TensorFlow/Keras. 2. Preprocess the input image to a size of 256x256 and normalize it. 3. Pass the preprocessed image to the model for prediction. ```python from keras.models import load_model import numpy as np from tensorflow.keras.utils import load_img, img_to_array def predict_image(image_path, model): img = load_img(image_path, target_size=(256, 256)) img_array = img_to_array(img) / 255.0 img_array = np.expand_dims(img_array, axis=0) prediction = model.predict(img_array) return np.argmax(prediction, axis=1) model = load_model('best_model.weights.h5') predicted_class = predict_image('image.jpg', model) print(f"Predicted class: {predicted_class}") ``` ## Training Details - **Base Model:** ResNet50V2 (pretrained on ImageNet) - **Dataset:** Custom animal dataset - **Optimizer:** Adam - **Loss Function:** Sparse Categorical Crossentropy - **Metrics:** Accuracy - **Augmentation:** Applied during training ## Model Performance Will be updated soon