shalchianmh commited on
Commit
17b0d26
1 Parent(s): 0d1b449

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: agpl-3.0
3
+ pipeline_tag: object-detection
4
+ tags:
5
+ - ultralytics
6
+ - tracking
7
+ - instance-segmentation
8
+ - image-classification
9
+ - pose-estimation
10
+ - obb
11
+ - object-detection
12
+ - yolo
13
+ - yolov8
14
+ - license_plate
15
+ - Iran
16
+ - veichle_lisence_plate
17
+
18
+ ---
19
+
20
+ ## <div align="center">Documentation</div>
21
+
22
+ See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com/) for full documentation on training, validation, prediction and deployment.
23
+
24
+ <details open>
25
+ <summary>Install</summary>
26
+
27
+ Pip install the ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
28
+
29
+ [![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)
30
+
31
+ ```bash
32
+ pip install ultralytics
33
+ ```
34
+
35
+ For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart/).
36
+
37
+ [![Conda Version](https://img.shields.io/conda/vn/conda-forge/ultralytics?logo=condaforge)](https://anaconda.org/conda-forge/ultralytics) [![Docker Image Version](https://img.shields.io/docker/v/ultralytics/ultralytics?sort=semver&logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics)
38
+
39
+ </details>
40
+
41
+ <details open>
42
+ <summary>Usage</summary>
43
+
44
+ ### CLI
45
+
46
+ YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command:
47
+
48
+ ```bash
49
+ yolo predict model=YOLOv8m_Iran_license_plate_detection.pt source='your_image.jpg'
50
+ ```
51
+
52
+ `yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples.
53
+
54
+ ### Python
55
+
56
+ YOLOv8 may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
57
+
58
+ ```python
59
+ from ultralytics import YOLO
60
+ # Load a model
61
+ model = YOLO("YOLOv8m_Iran_license_plate_detection.pt")
62
+ # Train the model
63
+ train_results = model.train(
64
+ data="Iran_license_plate.yaml", # path to dataset YAML
65
+ epochs=100, # number of training epochs
66
+ imgsz=640, # training image size
67
+ device="cpu", # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
68
+ )
69
+ # Evaluate model performance on the validation set
70
+ metrics = model.val()
71
+ # Perform object detection on an image
72
+ results = model("path/to/image.jpg")
73
+ results[0].show()
74
+ # Export the model to ONNX format
75
+ path = model.export(format="onnx") # return path to exported model
76
+ ```
77
+
78
+ See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python/) for more examples.
79
+
80
+ </details>