Ziga Kerec
commited on
Commit
•
f67c5e5
1
Parent(s):
2f17452
pushed new endpoint
Browse files- __pycache__/handler.cpython-310.pyc +0 -0
- handler.py +63 -14
- test.py +3 -1
__pycache__/handler.cpython-310.pyc
ADDED
Binary file (2.27 kB). View file
|
|
handler.py
CHANGED
@@ -1,20 +1,69 @@
|
|
1 |
-
from typing import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
class EndpointHandler():
|
4 |
def __init__(self, path=""):
|
5 |
-
#
|
6 |
-
|
7 |
-
#
|
8 |
-
|
|
|
|
|
9 |
|
10 |
-
|
|
|
11 |
"""
|
12 |
-
|
13 |
-
|
14 |
-
kwargs
|
15 |
-
Return:
|
16 |
-
A :obj:`list` | `dict`: will be serialized and returned
|
17 |
"""
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
import torch
|
3 |
+
from diffusers import DPMSolverMultistepScheduler, StableDiffusionInpaintPipeline
|
4 |
+
from PIL import Image
|
5 |
+
import base64
|
6 |
+
from io import BytesIO
|
7 |
+
|
8 |
+
|
9 |
+
# set device
|
10 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
11 |
+
|
12 |
+
if device.type != 'cuda':
|
13 |
+
raise ValueError("need to run on GPU")
|
14 |
|
15 |
class EndpointHandler():
|
16 |
def __init__(self, path=""):
|
17 |
+
# load StableDiffusionInpaintPipeline pipeline
|
18 |
+
self.pipe = StableDiffusionInpaintPipeline.from_pretrained(path, torch_dtype=torch.float16)
|
19 |
+
# use DPMSolverMultistepScheduler
|
20 |
+
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config)
|
21 |
+
# move to device
|
22 |
+
self.pipe = self.pipe.to(device)
|
23 |
|
24 |
+
|
25 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
26 |
"""
|
27 |
+
:param data: A dictionary contains `inputs` and optional `image` field.
|
28 |
+
:return: A dictionary with `image` field contains image in base64.
|
|
|
|
|
|
|
29 |
"""
|
30 |
+
inputs = data.pop("inputs", data)
|
31 |
+
encoded_image = data.pop("image", None)
|
32 |
+
encoded_mask_image = data.pop("mask_image", None)
|
33 |
+
|
34 |
+
# hyperparamters
|
35 |
+
num_inference_steps = data.pop("num_inference_steps", 25)
|
36 |
+
guidance_scale = data.pop("guidance_scale", 7.5)
|
37 |
+
negative_prompt = data.pop("negative_prompt", None)
|
38 |
+
height = data.pop("height", None)
|
39 |
+
width = data.pop("width", None)
|
40 |
+
|
41 |
+
# process image
|
42 |
+
if encoded_image is not None and encoded_mask_image is not None:
|
43 |
+
image = self.decode_base64_image(encoded_image)
|
44 |
+
mask_image = self.decode_base64_image(encoded_mask_image)
|
45 |
+
else:
|
46 |
+
image = None
|
47 |
+
mask_image = None
|
48 |
+
|
49 |
+
# run inference pipeline
|
50 |
+
out = self.pipe(inputs,
|
51 |
+
image=image,
|
52 |
+
mask_image=mask_image,
|
53 |
+
num_inference_steps=num_inference_steps,
|
54 |
+
guidance_scale=guidance_scale,
|
55 |
+
num_images_per_prompt=1,
|
56 |
+
negative_prompt=negative_prompt,
|
57 |
+
height=height,
|
58 |
+
width=width
|
59 |
+
)
|
60 |
+
|
61 |
+
# return first generate PIL image
|
62 |
+
return out.images[0]
|
63 |
+
|
64 |
+
# helper to decode input image
|
65 |
+
def decode_base64_image(self, image_string):
|
66 |
+
base64_image = base64.b64decode(image_string)
|
67 |
+
buffer = BytesIO(base64_image)
|
68 |
+
image = Image.open(buffer)
|
69 |
+
return image
|
test.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from handler import EndpointHandler
|
2 |
|
3 |
# init handler
|
4 |
-
my_handler = EndpointHandler(path="
|
5 |
|
6 |
# # prepare sample payload
|
7 |
# non_holiday_payload = {"inputs": "I am quite excited how this will turn out", "date": "2022-08-08"}
|
@@ -15,3 +15,5 @@ my_handler = EndpointHandler(path=".")
|
|
15 |
# print("non_holiday_pred", non_holiday_pred)
|
16 |
# print("holiday_payload", holiday_payload)
|
17 |
|
|
|
|
|
|
1 |
from handler import EndpointHandler
|
2 |
|
3 |
# init handler
|
4 |
+
my_handler = EndpointHandler(path="./")
|
5 |
|
6 |
# # prepare sample payload
|
7 |
# non_holiday_payload = {"inputs": "I am quite excited how this will turn out", "date": "2022-08-08"}
|
|
|
15 |
# print("non_holiday_pred", non_holiday_pred)
|
16 |
# print("holiday_payload", holiday_payload)
|
17 |
|
18 |
+
data = {"inputs": "Hello"}
|
19 |
+
output = my_handler(data)
|